

Fourth Semester B.E. Degree Examination, Aug./Sept.2020 Advanced Mathematics – II

Time: 3 hrs.

EC HIMMIN

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Find the angles between any two diagonals of a cube. (06 Marks)
 - b. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two lines then angle θ between the lines is $\theta = \cos^{-1}(l_1 l_2 + m_1 m_2 + n_1 n_2)$. (07 Marks)
 - c. If a line makes angles α , β , γ , δ with four diagonals of a cube, show that : $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = 4/3. \tag{07 Marks}$
- 2 a. Find the equation of the plane through (1, -2, 2), (-3, 1, -2) and perpendicular to the plane 2x y z + 6 = 0.
 - b. Find the equation of the line passing through the points (1, 2, -1) and (3, -1, 2). At what point does it meet the yz plane. (07 Marks)
 - c. Show that the lines $\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$ intersect. Find the point of intersection and the equation of the plane in which they lie. (07 Marks)
- 3 a. Show that the position vectors of the vertices of a triangle $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ and $3\hat{i} 4\hat{j} + 4\hat{k}$ from a right-angle triangle. (06 Marks)
 - b. Prove that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$. (07 Marks)
 - c. Find the constant a so that the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} 3\hat{k}$ and $3\hat{i} a\hat{j} 5\hat{k}$ are coplanar. (07 Marks)
- 4 a. If $\frac{d\overrightarrow{A}}{dt} = \overrightarrow{W} \times \overrightarrow{A}$, $\frac{d\overrightarrow{B}}{dt} = \overrightarrow{W} \times \overrightarrow{B}$, show that $\frac{d}{dt}(\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{W} \times (\overrightarrow{A} \times \overrightarrow{B})$. (06 Marks)
 - b. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction $2\hat{i} 3\hat{j} 6\hat{k}$.
 - Find the angle between the surfaces $x^2yz + 3xz^2 = 5$ and $x^2y^3 = 2$ at (1, -2, -1). (07 Marks)
- 5 a. Find unit vector normal to the surface $x^2y + 2xz^2 = 8$ at the point (1, 0, 2). (06 Marks)
 - b. Prove that $\operatorname{curl}(\phi \vec{A}) = (\operatorname{grad}\phi) \times \vec{A} + \phi \operatorname{curl} \vec{A}$. (07 Marks)
 - c. Prove that $\nabla^2(\mathbf{r})^n = \mathbf{n}(\mathbf{n}+1)\mathbf{r}^{n-2}$, where $\mathbf{r} = |\mathbf{x}\mathbf{i}+\mathbf{y}\mathbf{j}+\mathbf{z}\mathbf{k}|$. (07 Marks)

MATDIP401

b. If
$$f(t) = \begin{cases} 2t & \text{for } 0 \le t \le 5 \\ 1 & \text{for } t > 5 \end{cases}$$
, find $L[f(t)]$.

c. Find
$$L\left[\frac{\cos 2t - \cos 3t}{t}\right]$$
.

7 a. By using the convolution theorem find the inverse Laplace transforms of

$$\frac{1}{s^2(s+5)}.$$

(06 Marks)

b. Find
$$L^{-1} \left[\frac{(3s+7)}{s^2 + 2s - 3} \right]$$

(07 Marks)

c. Find the inverse Laplace transform of
$$log \left(1 + \frac{a^2}{s^2}\right)$$

(07 Marks)

8 a. Using Laplace transform solve:

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}, y(0) = 0 = y'(0).$$

(10 Marks)

b. Solve the system of equations by the method of Laplace transform

$$(D-2)x + 3y = 0, 2x + (D-1)y = 0$$

Where
$$D = \frac{d}{dt}$$
, given that $x = 8$, $y = 3$ at $t = 0$.

(10 Marks)

* * * * *