

18CAE/MDE12

First Semester M.Tech. Degree Examination, Aug./Sept.2020

Advanced Theory of Vibrations

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Enumerate vibration of mechanical systems and causes of vibration. (06 Marks)
 - b. A body describes simultaneously two motions $x_1 = 3\sin 40t$, $x_2 = 4\sin 41t$. What is maximum and minimum amplitude of combined motion and what is the beat frequency?

 (04 Marks)
 - c. Obtain an expression for the natural frequency of spring mass system taking mass of spring into account. (10 Marks)

OR

- 2 a. Explain active vibration control system with neat sketches and example. (10 Marks)
 - b. Find total response of a single degree of freedom system with mass of 10 kg damping coefficient 20 N-S/m, spring constant 4000 N/m, initial displacement = 0.01m, initial velocity = 0 m/s under the following condition.

An external force $F(t) = F_0 \cos \omega t$ acts on the system with $F_0 = 100$ N and $\omega = 10$ rad/s.

(10 Marks)

Module-2

- a. Explain why vibration measurement is necessary. (04 Marks)
 - . Write a note on vibration measurement scheme with block diagram. (06 Marks)
 - c. What is transducers? Explain any two transducers used in vibration analysis. (10 Marks)

OR

- 4 a. Explain two approaches used in dynamic testing of machines and structures. (08 Marks)
 - b. Explain the following:
 - (i) Machine maintenance technique
 - (ii) Machine condition monitoring techniques

(12 Marks)

Module-3

- a. Determine the response of spring mass system subjected to step excitation. (10 Marks)
 - Find the response equation for a spring mass dashpot system subjected to impulse force when time t = 0.

OR

- 6 a. Explain the following terms with respect to random vibrations:
 - (i) Mean square value
 - (ii) Wide band
 - (iii) Narrow band
 - (iv) White noise
 - (v) Band limited excitation

(10 Marks)

18CAE/MDE12

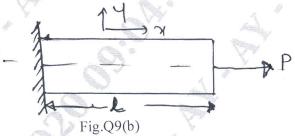
b. The eccentricity of a rotor (x), due to manufacturing errors, is found to have the following distribution

$$P(x) = \begin{cases} kx^2 & 0 \le x \le 5\\ 0 & \text{elsewhere} \end{cases}$$

where k is constant. Find:

- (i) the mean, standard deviation, and the mean square value of the eccentricity and
- (ii) the probability of realizing x less than or equal to 2 mm. (10 Marks)

Module-4


- (04 Marks) Differentiate linear and non-linear system of vibrations. Construct the trajectories of a simple harmonic oscillator by the method of isoclines. The
 - equation of simple harmonic is given by $\ddot{x} + \omega_n^2 x = 0$ (08 Marks)
 - Find the trajectories equation for undamped pendulum, and show trajectories on phase plane. (08 Marks)

- Explain perturbation method for non-linear vibrations. (10 Marks) (05 Marks)
 - Explain hard spring and soft spring characteristics. b. (05 Marks)

Explain Mathieu equation.

Module-5 Determine displacement equation for vibration of strings. (10 Marks)

A bar fixed at one end is pulled at the other end with a force P. The force is suddenly released. Investigate the vibration of the bar as shown in Fig.Q9(b).

(10 Marks)

OR

- Derive an equation for the torsional vibrations of circular shafts. (10 Marks)
 - b. Write short notes on the following:
 - Phase plane method for nonlinear vibration system (04 Marks)
 - (03 Marks) (ii) Logarithmic decrement
 - (03 Marks) (iii) Energy method