

GALORE

CBCS SCHEWE

16/17EPS424

Fourth Semester M.Tech. Degree Examination, Aug./Sept.2020 **Integration of Renewable Energy**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 With a neat figure, explain DC architecture of green and renewable power grid distribution (08 Marks)
 - b. Explain how a DG system operations as a part of utility power system. (08 Marks)

- Outline the smart grid PV UPS DG system. (08 Marks)
 - b. Deduce an expression for equivalent control input of discrete time sliding mode current controller considering the inverter and filter subsystem without transformer and load dynamics. (08 Marks)

Module-2

- Describe grid connected and stand alone AC power supply applications of DGS. (08 Marks)
 - Explain how power flows when two inverters are connected to load. (08 Marks)

- Outline the different methods used to control the inverter voltage. (08 Marks)
 - Enumerate different inverter system topologies. (08 Marks)

Module-3

- 5 Obtain the basic mathematical model of three phase four wire inverter with a split DC bus.
 - b. Write a note on Robust servo mechanism voltage controller and list out four conditions to obtain solution to RSC.

- Obtain the per unit one dimensional equivalent model of the three phase inverter system and write the system equation in state space.
 - b. Obtain the output voltage waveform of space vector PWM in terms of base vectors assuming normalized DC bus voltage for Y connected load. (08 Marks)

Module-4

- Write a note on stationary αβΟ reference frame versus ABC reference frame. (08 Marks)
 - Briefly explain the generalized uncertainty in robust stability analysis. (08 Marks)

Write a note on real and reactive power control problem in DG-grid connected mode. 8

(08 Marks)

b. Explain the impact of V and δ (Delta) variations on P and Q.

(08 Marks)

Module-5

a. List out the necessary steps to obtain the closed loop plant model.

(08 Marks)

b. Write a note on Robust stability analysis using structured singular value μ.

(08 Marks)

Explain the control system of conventional PWM rectifier with feed forward load power. 10

(08 Marks)

Analyse the three phase AC - DC - AC system topology.

(08 Marks)