

CBCS SCHEME

15EC661

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 **Data Structure using C++**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module,

	1	ote: Answer any FIVE full questions, choosing ONE full question from each module.	
		Module-1	
1	a. b.	Explain dynamic memory allocation using suitable diagrams. (06 Me What do you mean by linked lists? Explain the concept of insertion and deletion of nodes.)	
		linked lists using C++. (10 M)	
2	a.	Explain recursion. Write a recursive function in C++ to find the factorial of a number.	
		(10 M	arks)
	b.	Write a program in C++ to traverse along the nodes of a linked lists. (06 M	arks)
		Module-2	
3	a.	Write a C++ program to multiply two matrices. (10 M	arks)
	b.	Using the concept of stacks implement switch Box Routing. (06 M	arks)
		OR	
4	a.	Write a C++ program to transpose a given sparse matrix. (10 M	arks)
	b.	Explain how parenthesis matching is carried out using stacks. (06 M	arks)
		Module-3	
,	a.	What are advantages of circular queue over simple queue? (04 M	arks)
	b.	Write pseudo code for the following queue operations using array implementation	
		i) ISempty () ii) Enque () iii) Deque (). (05 M	
	C.	Write short notes on Hashing? (07 M	arks)
		OR	
6	a.	Discuss problem description and solution strategy for rail car arrangement. (09 M	
	b.	Explain how overflow condition is eliminated using hashing with chains. Compare	
		linear probing method. (07 M	arks)
		Module-4	
7	a.	Draw the binary expression trees corresponding to each of the following expressions.	
	1.	i) $(-A) + (X + Y)/((+B) * (C*A))$ ii) $((A + B) + C) + d$. (08 M	arks)
	b.	Write functions for: i) Pre – order traversal of a binary tree	
		ii) Determining height of the binary tree. (08 M	arks)
0		OR	
8	a.	Write ADT of a binary tree. (08 M	arks)
	b.	Write pre-order, in-order and post-order traversals for the tree given below: Pre –order ABDGEHKMCFILJ	
		Post – order GDMKHEBLIJFCA	
		In – order GDBEKMHACILFJ. (08 M	arks)
			wills)
9	a.	Write a C++ function to delete elements from max heaps. (10 M	arkel
	b.	What is priority queue? Explain operations performed on priority queues. (06 M	
		OR	

a. Write a function to insert an element in Binary Search Trees (10 Marks) b. Discuss Binary Search Tree with duplicates. (06 Marks)