

CBCS SCHEME

15EC63

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 **VLSI** Design

Max. Marks: 80 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

	1 44	ote. This wer any 11 to Juni questions, enousing of 12 Juni question J. on each move		
		Module-1		
1	a.	Explain the ideal I.V characteristics of nMOS transistor. Derive the equation for I	DS in three	
		region i) cut off region ii) non-saturated region iii) saturation region.	(10 Marks)	
	b.	Explain the nMOS fabrication with neat diagram.	(06 Marks)	
		OR		
2	a.	Explain the CMOS inverter transfer characteristics highlighting the regions of operations of		
		the MOS transistor.	(06 Marks)	
	b.	Describe with heat sketches the fabrication of P-well CMOS inverter.	(06 Marks)	
	c.	Compare CMOS and bipolar technology.	(04 Marks)	
		Module-2		
3	a.	Draw the circuit schematic and stick diagram of CMOS 2 input NAND gate.	(08 Marks)	
	b.	Explain briefly λ-based design rules for wire and transistor (nMOS, PMOS, CMO	S).	
			(08 Marks)	
		OR		
4	a.	Explain with diagram rise time model and fall time model of CMOS inverter.	(06 Marks)	
	b.	Explain briefly the circuit of inverting and non-inverting super buffer.	(06 Marks)	
	c.	Explain delay unit τ.	(04 Marks)	
		Module-3		
5	a.	What are the most commonly used scaling models? Provide scaling factor for:		
		i) Power dissipasen per gate ii) Current density		
		iii) Channel resistance Ron iv) Parasitic capacitance C _x .	(06 Marks)	
	b.		(05 Marks)	
	c.	Explain the design steps for 4-bit adder.	(05 Marks)	
		OR		
6	a.	Design regularity.	(04 Marks)	
	b.	Design 4 bit ALU to implement addition subtraction, EX-OR, EX-NOR and ANI	operation. (12 Marks)	
			(12 Marks)	
_		Module-4	(06 Marks)	
7	a.	Discuss the architectural issue related to sub system design. Explain briefly a parity generator with block diagram and stick diagram.	(06 Marks)	
	b.	Give the comparison of SSRAM and antifuse FPGA.	(04 Marks)	
	C.		(**************************************	
		OR	(05 Marks)	
8	a.	Explain with schematic view of flash based FPGA. Explain briefly switch logic implementing of a four way multiplexer.	(05 Marks)	
	b.	CEDCAO	(04 Marks)	
	C.		()	
		Module-5		

Explain the three transistor dynamic RAM - cell. (08 Marks) 9 Explain briefly nMOS Pseudo static memory cell. (08 Marks)

(08 Marks) Explain briefly logic verification principle. 10

Write a short note on: i) Built In Self Test (BIST) ii) Scan Design Technology. (08 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.