-16	0	M.	-	1 4
- 1	0	14		6/
- 1	4 7	1		

On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 **Antennas and Propagation**

Tim	ie: 3	hrs. Max. Mar	ks:100
No	te:	Answer any FIVE full questions, selecting atleast TWO questions from each	ch part.
		PART - A	
1	a.	Explain the following terms with respect to an antenna:	
1	a.		06 Marks)
	b.	Deduce the expression to depict the relation between effective aperture and di	
			07 Marks)
	C.	Derive the expression for a field at a particular point in free space.	07 Marks)
2	a.	Determine the actual directivity and approximate directivity for: i) $U = U_m \cos^3$	θ
		ii) $U = U_m \sin \theta \sin^2 \phi$ iii) $U = U_m \sin \theta \sin^3 \phi$ for $0 \le \theta$, $\phi \le \pi$.	10 Marks)
	b.	A linear array of 4 point sources has a distance of N2 between adjacent element	nts of the
		array. The power is applied with equal amplitude and a phase difference of $-d_{\rm r}$.	
		field pattern.	(10 Marks)
3	a.	Deduce the expression for the electric field component of a linear antenna of le	ength N ₂ .
			(12 Marks)
	b.	Illustrate that the radiation resistance of a short dipole is 73Ω .	(08 Marks)
4	a.	Derive the expression for electric field component of a small circular loop antenna	of radius
		'a' carrying current I.	(08 Marks)
	b.	State and mastare Paris	(06 Marks)
	c.	Deduce the expression for radiation resistance of a loop antenna.	(06 Marks)
		PART - B	
5	a.	Explain the Slot antenna and Complementary antenna.	(06 Marks)
	b.	Explain the features and operation of helical antenna with its modes of operation.	
	c.	Explain the working of Yagi – Uda antenna. Mention its applications.	(07 Marks)
6	a.	Explain Rumsey's principle and the operation of log periodic antenna.	(10 Marks)
Ü		Describe the operation of i) Antennas for ground penetrating radar ii) I	Embedded
			(10 Marks)
7		Deduce the resultant field strength due to direct and ground related rays at a di	stance 'd'
7	a.	from the transmitter, 'h _t ' is the height of the transmitter and 'h _r ' is the height	ght of the
			(10 Marks)
	b.	Describe the factors affecting ground wave propagation.	(06 Marks)
	c.	A VHF communication is to be established at 90MHz, with the transmitter power	er of 35W.
		Calculate the LOS communication distance, if the height of transmitter and receiv	
		are 40m and 25m respectively.	(04 Marks)
8	a.		(06 Marks)
	1.	Coloulate the critical frequency for E. Fe and E layers for which the maxim	num ionic

- b. Calculate the critical frequency for F₁, F₂ and E layers for which the maximum ionic densities are 2.3 × 10⁶, 3.5 × 10⁶ and 1.7 × 10⁶ electrons/cm³ respectively. (06 Marks)
 c. Describe the significance of MUF and skip distance. Deduce the expression for MUF.

(08 Marks)