

17EC36

Third Semester B.E. Degree Examination, Aug./Sept. 2020

Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's Law in vector form.

(05 Marks)

b. Define electric field intensity and electric flux density.

(05 Marks)

- c. Let a point charge $Q_1 = 25$ nC be located at $P_1(4, -2, 7)$ and a charge $Q_2 = 60$ nC be at $P_2(-3, 4, -2)$.
 - i) If $\epsilon = \epsilon_0$, find electric field intensity (E) at $P_3(1, 2, 3)$
 - ii) At what point on the Y axis is $E_X = 0$.

(10 Marks)

(07 Marks)

OR

- 2 a. Given a 60 µC point charge located at the origin, find the total electric flux passing through
 - i) That portion of the sphere r = 26cm bounded by $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$
 - ii) The closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm.
 - b. Derive an expression for electric field intensity at a distant point due to infinite line charge distribution. (08 Marks)
 - c. A uniform volume charge density of $80\mu C/m^3$ is present throughout the region 8mm < r < 10mm. Let $\rho_r = 0$ for 0 < r < 8mm.
 - i) Find the total charge inside the spherical surface r = 10mm
 - ii) Find D_r at r = 10mm
 - iii) If there is no charge for r > 10mm, find D_r at r = 20mm.

(05 Marks)

Module-2

3 a. State and prove Gauss law.

(05 Marks)

b. Determine the work done in carrying a $2\mu C$ charge from (2, 1, -1) to (8, 2, -1) in the field

$$\vec{E} = ya_x + xa_y$$
 along

- i) the parabola $x = 2y^2$
- ii) the hyperbola $x = \frac{8}{(7-3y)}$.

(08 Marks)

c. Determine an expression for the volume charge density associated with each \overrightarrow{D} field following:

i)
$$\vec{D} = \frac{4xy}{z} a_x + \frac{2x^2}{z} a_y + \frac{2x^2y}{z^2} a_z$$

ii) $\vec{D} = z \sin \phi a_{\rho} + z \cos \phi a_{\phi} + \rho \sin \phi a_{z}$

iii)
$$\vec{D} = \sin \theta \sin \phi a_{\gamma} + \cos \theta \sin \phi a_{\theta} + \cos \phi a_{\phi}$$
. (07 Marks)

OR

- 4 a. Two uniform line charges, 8nC/m each, are located at x = 1, z = 2 and at x = -1, y = 2 in free space. If the potential at the origin is 100V, find V at P(4, 1, 3). (08 Marks)
 - b. Within the cylinder $\rho = 2$, 0 < z < 1, the potential is given by $v = 100 + 50\rho + 150\rho \sin \phi V$. Find V, \vec{E}, \vec{D} and ρ_V at $P(1, 60^\circ, 0.5)$ in free space. (08 Marks)
 - c. Derive equation of continuity.

(04 Marks)

Module-3

5 a. Derive Poisson's and Laplaces equation.

(05 Marks)

- b. A uniform volume charge has constant density $\rho_V = \rho_0$ C/m³, and fills the region r < a, in which permittivity ' \in ' is assumed. A conducting spherical shell is located at r = a and is held at ground potential. Find:
 - i) the potential everywhere
 - ii) the electric field intensity, \vec{E} everywhere.

(09 Marks)

c. Explain Biot-Savart's law.

(06 Marks)

OR

6 a. State and prove Stoke's theorem.

(05 Marks)

- b. A solid conductor of circular cross-section with a radius of 5mm has a conductivity that varies with radius. The conductor is 20m long, and there is a potential difference of 0.1 V DC between its two ends. Within conductor, $H = 10^5 \rho^2 a_{\phi}$ A/m.
 - i) Find 'σ' conductivity as a function ρ charge density
 - ii) What is the resistance between the two ends?

(08 Marks)

c. A straight conductor of length '2L' carrying a current 'I' coincides with z direction. Obtain an expression for vector magnetic potential at a point in a bisecting plane of the conductor.

Also find magnetic flux density B at that point.

(07 Marks)

Module-4

7 a. The point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction :

$$a_V = 0.60a_x + 0.75a_y + 0.30a_z$$

Calculate the magnitude of the force exerted on the charge by the field:

i)
$$\vec{B} = -3a_x + 4a_y + 6a_z mT$$

ii)
$$\vec{E} = -3a_x + 4a_y + 6a_z kV/m$$

iii)
$$\stackrel{\rightarrow}{B}$$
 and $\stackrel{\rightarrow}{E}$ acting together.

(07 Marks)

- b. Obtain an expression for the force between differential current elements.
- (07 Marks)

c. Write a note on magnetic boundary conditions.

(06 Marks)

OR

- 8 a. Find the magnetic field intensity 'H' inside a magnetic material, given the following:
 - i) M = 100 A/m, $\mu = 1.5 \times 10^{-5} \text{ H/m}$

ii) B = $200 \mu T$, $\chi_m = 15$

(06 Marks)

b. Derive an expression for energy stored in the magnetic field.

(06 Marks)

- c. A current element $I_1dI_1 = 10^{-4}a_z$ A.m is located at $P_1(2, 0, 0)$ another current element $I_2dI_2 = 10^{-6}[a_x 2a_y + 3a_z]$ A.m is located at $P_2(-2, 0, 0)$ and both are in free space :
 - i) Find force exerted on I₂dl₂ by I₁dl₁
 - ii) Find force exerted on I₁dl₁ by I₂dl₂.

(08 Marks)

Module-5

9 a. Define Faraday's law. Derive Maxwell's equation from Faraday's law in point form.

(07 Marks)

- b. Let $\mu = 3 \times 10^{-5} \text{H/m}$, $\epsilon = 1.2 \times 10^{-10} \text{F/m}$, and $\sigma = 0$ everywhere. If $\vec{H} = 2\cos(10^{10} t \beta x) a_z A/m$, use Maxwell's equations to obtain expressions for \vec{D} and \vec{E} (06 Marks)
- c. Derive wave equations in free space for a uniform plane wave.

(07 Marks)

OR

10 a. State and prove Poynting's theorem.

(08 Marks)

b. Discuss wave propagation in good conductor.

(07 Marks)

c. A certain lossless material has $\mu_r = 4$ and $\epsilon_r = 9$. A 10MHz uniform plane wave is propagating in the α_y direction with $E_{x_0} = 400 \text{V/m}$ and $E_{y_0} = E_{z_0} = 0$ at P(0.6, 0.6, 0.6) at t = 60 ns. Find ' β ', λ , ν_p and η .

* * * * *