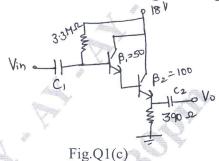


17EC33

Third Semester B.E. Degree Examination, Aug./Sept.2020 **Analog Electronics**


Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

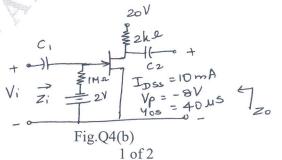
Module-1

- Derive expressions for Z_i, Z_o, A_v and A_I for common emitter fixed bias configuration using hybrid equivalent model.
 - b. Draw and explain the hybrid-π model of transistor in CE configuration mentioning significance of each component in model.
 - Calculate DC bias voltage and currents for the Darlington configuration shown in Fig.Q1(c).

(04 Marks)

OR

- Derive the expression for Z_i, Z_o and A_v for emitter follower configuration using r_e model.
 - Define h parameters and derive h parameters model of CE-BJT.


(10 Marks) (10 Marks)

Module-2

- Explain the construction and working principle of n-channel JFET and draw the 3 (08 Marks)
 - Derive an expression for Z_i, Z_o and A_v of FET self bias configuration with bypassed R_s. (08 Marks)
 - Distinguish between JFET and MOSFET.

(04 Marks)

- Draw the JFET common gate configuration circuit. Derive Zi, Zo and Av using small signal
 - b. The fixed bias configuration of Fig.Q4(b) has an operating point defined by $V_{GSO} = -2V$ and $I_{DQ} = 5.625$ mA with $I_{DSS} = 10$ mA and $V_P = -8V$. Determine : (i) g_m (iv) Z_o $(v) A_V$

(10 Marks)

Module-3

5 a. Describe Miller effect and derive an equation for miller input and output capacitance.

(10 Marks)

b. Explain high-frequency response of FET amplifier and derive expression for cut off frequencies defined by input and output circuits (f_{Hi} and f_{Ho}). (10 Marks)

OR

- 6 a. Determine the lower cut off frequencies for the voltage divider bias BJT amplifier with $C_S=10~\mu f,~C_C=1~\mu f,~C_E=20~\mu f,~R_S=1~k\Omega,~R_1=40~k\Omega,~R_2=10~k\Omega,~R_E=2~k\Omega,~R_0=4~k\Omega,~R_L=2.2~k\Omega,~\beta=100,~r_0=\alpha\Omega,~V_{CC}=20~V.$ (10 Marks)
 - b. Obtain the expressions for overall lower and higher cut-off frequencies for a multistage amplifier. (10 Marks)

Module-4

7 a. Derive the expressions for Z_{if} and Z_{of} for voltage series feedback connection type.

(06 Marks)

- b. Draw the circuit diagram of uni-junction oscillator and explain the principle of operation and draw the characteristic curve. (08 Marks)
- c. The following component values are given for the Wein-bridge oscillator of the circuit of $R_1 = R_2 = 33 \text{ k}\Omega$, $C_1 = C_2 = 0.001 \mu \text{b}$, $R_3 = 47 \text{ k}\Omega$, $R_4 = 15 \text{ k}\Omega$.
 - (i) Will this circuit oscillate?
 - (ii) Calculate the resonant frequency.

(06 Marks)

OR

- 8 a. Briefly explain characteristics of negative feedback amplifier. (08 Marks
 - b. Determine the voltage gain, input and output impedance with feedback for voltage series feedback having A = -100, $R_1 = 10 \text{ k}\Omega$ and $R_0 = 20 \text{ k}\Omega$ for feedback of $\beta = -0.1$. (04 Marks)
 - c. Explain characteristics of quartz crystal. With a neat diagram, explain the crystal oscillator in parallel resonant mode. (08 Marks)

Module-5

- 9 a. Explain series fed class A power amplifier. Show that its maximum conversion η is 25%.
 (10 Marks)
 - b. For a class B amplifier providing a 20 V peak signal to a 16Ω load (speaker) and a power supply of $V_{CC} = 30$ V. Determine the input power, output power and circuit η . (10 Marks)

OR

- 10 a. Derive an expression for second harmonic distortion. (05 Marks)
 - b. Define voltage regulator. Explain the series voltage regulator using transistor. (08 Marks)
 - c. Derive an expression for conversion gain of class B push pull amplifier with neat circuit diagram and waveform. (07 Marks)

* * * * *