

GBCS SCHEME

15EC36

Third Semester B.E. Degree Examination, Aug./Sept.2020 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define Electric Field Intensity, \vec{E} . Find \vec{E} at $(2, \frac{\pi}{2}, \frac{\pi}{6})$ due to a point charge located at origin. Let Q = 40nC.
 - b. Point charges of 120nC are located at A (0, 0, 1) and B(0, 0, -1) in free space. Find \vec{E} at P(x, 0, 0). Also find the maximum value of \vec{E} . (06 Marks)
 - c. Uniform line charges of 120 nC/m each lie along the entire extent of the three co-ordinate axes. Assuming free space conditions, find \vec{E} at P(-3, 2, -1)m. (06 Marks)

OR

- 2 a. Derive an expression for electric field intensity at a point in cylindrical coordinate system due to an infinite line charge distribution on Z axis. (06 Marks)
 - b. A point charge $Q_1 = 10 \ \mu\text{C}$ is located at $P_1(1, 2, 3)\text{m}$ in free space while $Q_2 = -5\mu\text{C}$ is at $P_2(1, 2, 10)\text{m}$. i) Find vector force exerted on Q_2 by Q_1 ii) Also, find the co-ordinates of P_3 at which a point charge Q_3 experiences no force. (07 Marks)
 - c. Find the total electric flux crossing an infinite plane at y = 0 due to the following charge distributions: a point charge, 30nC located at (1, 2, 3).
 - Two line charge distributions of 10nC/m each located in x = 0 plane at $y = \pm 2m$ extending over a length of 4m. (03 Marks)

Module-2

a. Define 'Divergence of a Vector' and 'Gradient of a Scalar'.

(04 Marks)

b. Derive the point form of Gauss's law.

(06 Marks)

- c. Give the flux density, $\vec{D} = \frac{5\sin\theta\cos\phi}{r} \hat{a}_r$, c/m². Find Volume charge density
 - Total charge contained in the region, r < 2m.
 - Total electric flux leaving the surface, r = 2m.

(06 Marks)

OR

- a. The value of \vec{E} at $P(\rho = 2, \phi = 40^{\circ}, Z = 3)$ is given by $\vec{E} = 100 \ \hat{a}_{\rho} 200 \ \hat{a}_{\phi} + 300 \ \hat{a}_{z}$, V/m. Determine the incremental work required to move a $20\mu C$ charge a distance of $6\mu m$ in the direction of : i) \hat{a}_{ρ} ii) \vec{E} iii) $\vec{G} = \hat{a}_{\rho} + 3 \hat{a}_{\phi} 2 \hat{a}_{z}$. (06 Marks)
 - b. State and explain continuity equation of current. (05 Marks
 - c. Given the potential field $V = 2x^2y 80$, and a point, P(2, 3, -4) in free space, find at 'P'.
 - i) V ii) \vec{E} iii) $\frac{dV}{dN}$ iv) \hat{a}_N .

Where \hat{a}_N is the unit vector normal to equipotential surface?

(05 Marks)

Module-3

a. Conducting plates at Z = 2cm and Z = 8cm are held at potentials of -3V and 9V respectively. The region between the plates is filled with a perfect dielectric of € = 5€₀.
 Find V, Ē and Ď in the region between the plates.

(05 Marks)

- b. Let $V = \frac{\cos 2\phi}{\cos 2\phi}$ volts in free space. Find volume charge density at P(5, 60°, 1) using (05 Marks) Poisson's equation.
- c. State the following: i) Uniqueness theorem ii) Ampere's law iii) Stoke's theorem. (05 Marks)

- a. Explain Scalar and Vector magnetic potentials.
 - b. Verify Stoke's theorem for $\vec{H} = 2r \cos \theta \ \hat{a}_r + r \ \hat{a}_{\phi}$ for the path defined by $0 \le r \le 1$ and $0 \le \theta \le 90^{\circ}$. (06 Marks)
 - c. The magnetic field intensity is given by $\vec{H} = 0.1 \text{ y}^3 \hat{a}_x + 0.4 \text{ x} \hat{a}_z$, A/m. Determine the current flow through the path $P_1(5, 4, 1)$ to $P_2(5, 6, 1)$ to $P_3(0, 6, 1)$ to (0, 4, 1). Also find (05 Marks) current density, J.

Module-4

- a. Obtain an expression for magnetic force between differential current elements.
 - b. A point charge, Q = 18nC has a velocity of 5×10^6 m/s in the direction $\hat{a} = 0.6 \ \hat{a}_x + 0.75 \, \hat{a}_y + 0.3 \, \hat{a}_z$. Calculate the magnitude of the force exerted on the charge by the field $\vec{B} = -3 \hat{a}_x + 4 \hat{a}_y + 6 \hat{a}_z$, mT.
 - Three infinitely long parallel filaments each carry 50A in the â, direction. If the filament lie in the plane, x = 0 with a 2cm spacing between wires, find the vector fore per meter on each (06 Marks) filament.

- Obtain the boundary conditions at the interface between two magnetic materials. (05 Marks)
 - b. Find Magnetization in magnetic material where
 - i) $\mu = 1.8 \times 10^{-5} \text{ H/m}$ and H = 120 A/mii) $B = 300 \mu T$ and $X_m = 15$. (05 Marks)
 - Explain briefly the following as applicable to magnetic materials:
 - i) Magnetization ii) Permeability
 - iii) Potential energy.
- (06 Marks)

Module-5

Write Maxwell's equations in integral form and word statement form for free space.

(06 Marks)

- b. In a certain dielectric medium, $\mathcal{E}_r = 5$, $\sigma = 0$ and displacement current density $\vec{J}_d = 20 \cos (1.5 \times 10^8 \text{ t} - \text{bx}) \hat{a}_y$, $\mu \text{A/m}^2$. Determine electric flux density and electric field (06 Marks) intensity.
- c. A radial magnetic field $\vec{H} = \frac{2.239 \times 10^6}{cos \phi} \cos \phi \hat{a}_r$, a/m exists in free space. Find the magnetic
 - flux, φ crossing the surface defined by $-\frac{\pi}{4} \leq \varphi \leq \frac{\pi}{4}$, $0 \leq z \leq 1$, m. (04 Marks)

- Discuss the wave propagation of a uniform plane wave in a good conducting medium. 10 (06 Marks)
 - b. Derive the relation between E and H for a perfect dielectric medium.
 - c. Determine the skin depth for copper with conductivity of 58×10^6 , S/m at a frequency, (05 Marks) 10 MHz. Also find α , β and V_p .