a. Derive the expression for inductance of a 3-phase symmetrically spaced transmission line.

b. A 3-phase circuit 50 Hz line consists of 3 conductors each of diameter 21 mm. The spacing between conductors is as shown in Fig.Q4(b).

Fig.Q4(b) diameter of each conductor = 21 mm

Find the capacitance and capacitive reactance/phase/km of the line. The line is transposed at regular intervals (06 Marks)

c. Find the capacitance of a single phase line 40 km long consisting of two parallel wires each 4 mm in radius and 2m apart. Determine the capacitance of the line taking into account effect of ground. The height of conductors above ground is 5m. (08 Marks)

Module-3

- Discuss the nominal T-model of medium transmission line with appropriate circuit diagram 5 and phasor diagram and hence obtain the expressions for regulation and ABCD constants for (10 Marks) the same.
 - A 3-phase short transmission line delivers 3 MW at a power factor of 0.8 lagging to a load. If the sending end voltage is 33 KV. Determine: (i) Receiving end voltage (ii) Line current (iv) Regulation. The resistance and reactance of each (iii) Transmission efficiency conductor are 5Ω and 8Ω respectively.

- Briefly explain the classification of overhead transmission line. Also define voltage 6 (07 Marks) regulation and transmission line efficiency.
 - (05 Marks) Write a short note on Ferranti effect.
 - Derive the expression for ABCD parameter constants of a medium transmission using π - method. Show that AD – BC = 1.

- Explain the phenamenon of corona in overhead transmission lines. (06 Marks) 7
 - Show that in a single core cable, the ratio of $\frac{g_{max}}{g_{min}} = \frac{D}{d}$ where 'D' is diameter of sheath and
 - (06 Marks) 'd' is core diameter.
 - A single core lead covered cable has a conductor diameter of 3 cm with insulation diameter of 8.5 cm. The cable is insulated with two dielectrics of permitivities 5 and 3 respectively. The maximum stresses in two dielectrics are 38 KV/cm and 26 KV/cm respectively. Calculate radial thickness of insulating layers and working voltage of the cable.

OR

- Draw the cross sectional view of a single core cable and explain its construction. (06 Marks)
 - b. A 33 KV, three phase underground cable, 4m long uses 3 single core cables. Each of the conductor has a diameter of 2.5 cm and the radial thickness of insulation 0.5 cm. The relative permittivity of dielectric is 3. Find: (i) Capacitance of cable/phase (ii) Charging (iii) Total charging KVAR
 - c. Show that in a cable using two intersheaths the maximum stress in the dielectric reduces by
 - the factor $\frac{1}{\frac{1}{3}(1+\alpha+\alpha^2)}$ of the maximum stress in an ungraded cable, if $\frac{d_1}{d} = \frac{d_2}{d_1} = \frac{D}{d_2} = \alpha$.

(08 Marks)

(06 Marks)

Module-5

- a. What are requirements of good distribution system? (05 Marks)
 - b. What is power quality? What are different power quality problems? (06 Marks)
 - c. A single phase ring distributor is fed at point A. The loads at points B and C are 50 A at 0.6 p.f. lag and 0.8 p.f lag respectively. Both p.f. are with reference to voltage at point A. The impedances of section AB = $(1.4 + J1.4)\Omega$, section BC = $(2 + J4)\Omega$ and section (09 Marks) $CA = (2 + J3)\Omega$. Find current in each section.

- Write a short note on: (i) Reliability and (ii) Bath tub curve. 10
 - (06 Marks) What are the limitations of distribution system?
 - A single phase distributor, 1 km long has a resistance and reactances of 0.4Ω and 0.6Ω (go and return) respectively. The voltage at the far end is $V_C = 230 \text{ V}$ and the current at C is 100 A at a p.f of 0.8 lag. At the midpoint B of the distributor, a current of 100 A at a p.f of 0.6 lag with reference to the voltage V_B . Calculate the supply voltage V_A and phase angle (08 Marks) between sending end A and receiving (far) end C.