

CBCS SCHEME

17EE45

Fourth Semester B.E. Degree Examination, Aug./Sept.2020

Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Given two vectors, $\overrightarrow{A} = \overrightarrow{a_x} + \overrightarrow{a_y} 3\overrightarrow{a_z}$, $\overrightarrow{B} = 3\overrightarrow{a_x} 2\overrightarrow{a_y} 2\overrightarrow{a_z}$, find (i) $|2\overrightarrow{A} \overrightarrow{B}|$
 - (ii) $|\vec{A}|(\vec{A}+\vec{B})$ (iii) Unit vector along $(2\vec{A}-\vec{B})$ (08 Marks)
 - b. Find the cross product of the two vectors $\vec{A} = 2\vec{a}_x \vec{a}_y + 3\vec{a}_z$ and $\vec{B} = -5\vec{a}_x 6\vec{a}_y + 7\vec{a}_z$ and then find the unit vector normal to \vec{A} and \vec{B} . Also find the angle between \vec{A} and \vec{B} .
 - c. State Gauss's law. Determine the expression for electric field intensity at a distance 'r' from an infinite line charge using Gauss's law. (06 Marks)

OR

2 a. State and explain Coulomb's law in vector form.

(08 Marks)

- b. Given two points P(-3, 2, 1) and $Q(r = 5, \theta = 20^{\circ}, \phi = -70^{\circ})$, find:
 - (i) Spherical coordinates of P
 - (ii) Rectangular coordinates of Q
 - (iii) Distance from P to Q

(06 Marks)

- c. Determine:
 - (i) Gradient of the scalar field $u = \rho^2 z \cos 2\phi$
 - (ii) Divergence of the vector $\overrightarrow{A} = x^2 yz \overrightarrow{a}_x + xz \overrightarrow{a}_z$

(06 Marks)

Module-2

- 3 a. Find the energy stored in free space for the region $2 \times 10^{-3} \, \text{m} < r < 3 \times 10^{-3} \, \text{m}$, $0 < \theta < \frac{\pi}{2}$,
 - $0<\varphi<\frac{\pi}{2}$ given the potential field V=100/r Volts.

(08 Marks)

- b. Two point charges of -1nC and +1nC are located at A(-3, 1, 5) and B(6, -5, 2)m respectively. Find the electric potential at point P(3, -6, -9)m. (06 Marks)
- c. Derive the boundary conditions between two dielectric materials.

(06 Marks)

OR

4 a. Given $\vec{E}_1 = 2\vec{a}_x - 3\vec{a}_y + 5\vec{a}_z$ V/m at the charge free interface shown in Fig.Q4(a), find \vec{D}_2 and angles ϕ_1 and ϕ_2 .

Fig.Q4(a)

(08 Marks)

- b. Derive an expression for the potential of a coaxial cable in the dielectric space between inner and outer conductors. (06 Marks)
- c. Derive an expression for capacitance of a parallel plate capacitor with a dielectric interface parallel to the plates. (06 Marks)

Module-3

- 5 a. In spherical coordinates, V = 0 at r = 0.1 m and V = 100 V at r = 2m. Assuming free space between the concentric spherical shell, find \vec{E} and \vec{D} . (08 Marks)
 - b. Write Laplace and Poisson's equations in all three coordinate systems. (06 Marks)
 - c. In cylindrical coordinate system, $\overrightarrow{H} = (4r 2r^2) \overrightarrow{a}_{\phi} A/m$, $0 \le r \le 1$. Find:
 - (i) \overrightarrow{J} as a function of r within the cylinder, (ii) Total current that passes through the surface, z=0 and $0 \le r \le 1$ m in \overrightarrow{a}_z direction. (06 Marks)

OR

- 6 a. Find the potential and volume charge density at P(0.5, 1.5, 1)m in free space given the potential field as under, $V = 3x^2 y^2 z^2$ Volts. (08 Marks)
 - b. State and explain Biot-Savart's law. (06 Marks)
 - c. If $\vec{H} = 20\rho^2 \vec{a}_{\phi}$ A/m, determine current density \vec{J} . (06 Marks)

Module-4

- 7 a. Derive boundary conditions at the boundary between two magnetic materials of different permeabilities. (08 Marks)
 - b. A point charge of $Q = -20 \mu c$ is moving with a velocity of $\vec{V} = (-3\vec{a}_x 4\vec{a}_y + 4.5\vec{a}_z) \times 10^6 \text{ m/s}$. Find the magnitude of the vector force exerted on the moving particle by the field.
 - (i) $\vec{E} = \vec{a}_x + 1.5 \vec{a}_y 2 \vec{a}_z \text{ kV/m}$ (ii) $\vec{B} = 4 \vec{a}_x 6 \vec{a}_y + 10 \vec{a}_z \text{ mT}.$ (06 Marks)
 - c. Obtain the relation between current density \vec{J} and volume charge density ρ_v . (06 Marks)

OR

8 a. The z=0 plane marks the boundary between two magnetic media. Medium-1 is the region z>0 and medium 2 is the region z<0. The magnetic flux density in medium-1 is $\vec{B}_1 = 1.5 \vec{a}_x + 0.8 \vec{a}_y + 0.6 \vec{a}_z$ mT. Find the magnetic flux density of medium-2. Assume medium-1 as free space and relative permeability of medium-2 as 100. (08 Marks)

17EE45

b. Derive the expression for self inductance of a coaxial cable. (06 Marks)

c. Calculate the inductance of 10m long coaxial cable filled with material for which $\epsilon_r = 18$, $\sigma = 0$, $\mu_r = 80$. The external and internal diameters of the cable are 1 mm and 4 mm respectively. (06 Marks)

Module-5

9 a. Explain skin effect and skin depth. Derive the expression for skin depth. (08 Marks)

b. List Maxwell's equations for time-varying fields in point form and integral form. (06 Marks)

c. Starting from Ampere's circuital law, derive an expression for displacement current density for time varying fields.

(06 Marks)

OR

10 a. A uniform plane wave with 10 mHz frequency has average Poynting vector of 1 W/m². If the medium is a perfect dielectric with $\mu_r = 2$, $\varepsilon_r = 3$, find:

i) velocity (ii) wavelength (iii) intrinsic impedance.

(08 Marks)

b. A short vertical transmitting antenna erected on the surface of a conducting earth produces
 E_{effective} = 150 sin θ V/m at points at a distance of 2 kms from the antenna. Compute the
 Poynting vector. (06 Marks)

c. A 10 giga Hz uniform plane wave travelling in free space in x-direction has $E_z = 1 \text{ V/m}$. Find the value of magnetic field and propagation constant. (06 Marks)

* * * *