

Third Semester B.E. Degree Examination, Aug./Sept.2020

Analog Electronic Circuits

Time: 3 hrs.

BANG

Max. Marks: 100

17EE34

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. For the clipper circuit shown in fig. $Q\overline{1(a)}$, the input is Vi = 50 Sinwt. Calculate and plot to scale the transfer characteristic, indicating slopes and intercept. (10 Marks)

- b. An emitter bias circuit has R_C = 2K Ω , R_E = 680 Ω , V_E = 2.1V, V_{CE} = 7.3V , I_B = 20 μ A. Find V_{CC} , R_B & β .
- c. What is meant by transistor biasing? Compare different biasing methods used for transistor biasing with respect to stability. (05 Marks)

OR

2 a. Design a suitable circuit represented by the box shown below. Which has input and output waveforms as indicated in fig. Q2(a). (08 Marks)

- b. Find the operating point for the voltage divider bias circuit with $\beta = 80$ and $V_{BE} = 0.6V$. Find the new operating point when β changes to 100 and V_{BE} changes to 0.25V. Given $V_{CC} = 15V$, $R_1 = 100 \text{ K}\Omega$, $R_2 = 18K\Omega$, $R_C = 4.7K\Omega$ and $R_E = 1K\Omega$. (08 Marks)
- c. Explain the circuit of a transistor switch being used as an inverter.

(04 Marks)

Module-2

- 3 a. Draw the hybrid small signal model of a transistor. Mention the advantages of h parameters. (04 Marks)
 - b. Derive the expression for A_V, A_I, Z_i and Z_o for CE fixed bias configuration using complete hybrid equivalent model. (10 Marks)
 - c. State and prove Miller's theorem.

(06 Marks)

OR

4 a. Derive the expressions for Z_i, Z_o, A_V and A_I for CB – configuration of transistor using approximate hybrid equivalent model. (10 Marks)

- b. The circuit shown in fig.Q4(b) uses transistor with $h_{ie}=1100\Omega$, $h_{fe}=50$, $h_{oe}=0.025\times 10^{-3}~\text{T}~,~h_{re}=2.5\times 10^{-4}.~Calculate~~R_i=\frac{V_l}{I_b}~,~~R_i^{'}~=\frac{V_l}{I_l}~,~~A_V=\frac{V_0}{V_l}~~and$
 - $A_{VS} = \frac{V_o}{V_S} \, . \label{eq:AVS}$

(10 Marks)

Module-3

- 5 a. Explain with the help of circuit, what is cascade connection? What are the advantages of this connection? (06 Marks)
 - b. What is negative feedback in amplifiers? Show that negative feedback increases the bandwidth of an amplifier. (08 Marks)
 - c. An amplifier with negative feedback has a voltage gain of 100. It is found that without feedback, an input signal of 50mV is required to produce a given output. Where as with feedback the input signal must be 0.5V for the same output. Determine the value of A and β.

 (06 Marks)

OR

- 6 a. With appropriate h parameters equivalent circuit, obtain the expression for Z_i , Z_o , A_v for a Darlington emitter follower. (10 Marks)
 - b. Derive expression Z_{if} and Z_{of} for voltage series feedback amplifier.

(10 Marks)

Module-4

- 7 a. Discuss the different types of power amplifiers. (04 Marks)
 - b. Show that the maximum percentage efficiency for a series fed class A amplifier is 25%.

 (10 Marks)
 - c. A Quartz crystal has L=0.12H, C=0.04 PF, $C_M=1$ PF and R=9.2 K Ω . Find i) f_s and ii) f_p . (06 Marks)

OR

- 8 a. State and explain the Barkhemsen's criterion to obtain sustained oscillations. (06 Marks)
 - b. With the help of circuit diagram, explain the working principle of R_c = phase shift oscillator, with relevant equations. (08 Marks)
 - c. A class B amplifier provides a 20V peak signal to a 16Ω load and a power supply of $V_{CC} = 30V$. Determine the input power, output power and circuit efficiency. (06 Marks)

Module-5

- 9 a. Draw the JFET amplifier using fixed bias configuration. Derive Z_i, Z_o and A_v using small signal model. (08 Marks)
 - b. Compare JFET and MOSFET. (04 Marks)

Design a fixed bias circuit of fig. Q9(c) to have ac gain of -15. Calculate the value of R_D to get this gain , if $V_{DD}=40V$, $R_G=10m\Omega$, $I_{DSS}=10mA$, $V_P=-4V$, $Y_{OS}=20\mu s$, $C_1=0.1\mu F$. (08 Marks)

OR

- 10 a. Sketch a typical characteristics for an n channel JFET. Explain the shape of the characteristics and identify the regions. (10 Marks)
 - b. Calculate the voltage gain , input and output impedance for the circuit of fig. Q10(b). Given $I_{DSS}=16mA$, $V_P=-4V$, $r_d=40K\Omega$, $V_{GSO}=-2.86V$. (10 Marks)

