18EE35

Third Semester B.E. Degree Examination, Aug./Sept.2020 **Digital System Design**

Baylime: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- With a basic block diagram, explain the combinational logic circuit. 1 (04 Marks)
 - Convert the following in the proper canonical formula and write the decimal notation.
 - i) $R = f(x, y, z) = (x + y)(\bar{x} + z)$ into maxterm canonical formula
 - ii) $Z = f(a, b, c) = ab + \bar{b}c + ac$ into minterm canonical formula.

(08 Marks)

- c. Reduce the following expression using k map and implement using basic gates.
 - i) $f(a, b, c, d) = \sum m(0, 1, 2, 3, 8, 9)$
 - ii) $f(A, B, C, D) = \pi M(0, 1, 4, 5, 14, 15) + d(12, 13)$.

(08 Marks)

Find the minimal sum and minimal product expression for the function: 2

 $f(a, b, c, d) = \Sigma m(4, 5, 12, 13, 14, 15) + d(10, 11).$

(06 Marks)

b. Simplify using Quine Mc Cluskey method:

 $f(a, b, c, d) = \Sigma m(0, 2, 8, 10).$

(07 Marks)

c. Simplify using k Map.

 $f(a, b, c, d, e) = \sum m(0, 1, 2, 3, 4, 5, 16, 17, 18, 19, 24, 25) + d(26, 27).$

(07 Marks)

Module-2

a. Design a 3 inputs, a, b and c and output y combinational circuit which has an output equal to 3 1 when majority of its inputs equal to 1 and output is 0 otherwise.

b. Design a full adder by constructing the truth table and simplify the output equations.

(06 Marks)

c. Implement the function:

 $f(a, b, c, d) = \Sigma m(4, 5, 7, 9, 11, 12, 13, 15)$

i) 8:1 MUX with a, b, c, as select lines

ii) 4:1 MUX with a, b as select lines.

(08 Marks)

OR

What is a Comperator? Design a 2 bit magnitude comperator using logic gates. a. (10 Marks)

Implement the following multiple function using one 74LS138 and external gates.

$$f_1(A, B, C) = \Sigma m(1, 3, 4, 6)$$

 $f_2(A, B, C) = \pi M(2, 3, 5, 7).$

(06 Marks)

c. Configure a 16:1 MUX using 4:1 MUX.

(04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

(04 Marks)

(04 Marks)

Module-3

- 5 a. Explain the operation of Master Slave JK flipflop with logic diagram, truth table, symbol and timing diagram.

 (10Marks)
 - b. Differentiate latches and flipflops. Derive the characteristic equation of SR flipflop, JK flipflop, T flipflop and D flipflop. (10 Marks)

OR

- 6 a. Explain the operation of a Gated SR Latch using NAND logic. (08 Marks)
 - b. Explain the working of a switch debouncer using SR Latch with wave forms. (08 Marks)
 - c. Convert a JK flipflop to T flipflop.

Module-4

a. Differentiate synchronous and asynchronous counter.

Design a Mod 10 ripple counter using JK flipflop. (06 Marks)

c. Draw the logic diagram of a 4 bit shift register with four D flipflop and four 4: 1 MUX with mode select inputs S₁ and S₀. The resister operates as follows:

S_1	S_0	Register Operation
0	0	No change
0	1	Compliment
1	0	Clear to zero
1	1	Load parallel data

(10 Marks)

OR

- 8 a. Mention the four different modes of operation shift register. With a neat block diagram, explain the operation of a 4 bit ring counter and Johnson counter. (10 Marks)
 - b. Design a MOD6 synchronous upcounter using T flipflop.

(10 Marks)

Module-5

- 9 a. With a neat block diagram, explain and distinguish between Moore and Mealy model in a sequential circuit analysis. (10 Marks)
 - b. Design a synchronous counter using JK flipflop to count the following sequence:

 $7 \to 4 \to 3 \to 1 \to 6 \to 0 \to 7. \tag{10 Marks}$

OR

a. What are the different types of RAM and ROM? Explain.

(10 Marks)

b. Construct a sequential circuit by obtaining the state and excitation table for the given diagram using KJ flipflop.

Fig. 010(b)

(10 Marks)

* * * * *

2 of 2