

15CS653

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 **Operation Research**

Time: 3 hrs.

BANGA

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

What is an Operation Research? Explain the phases of OR.

A farmer has to plant two kinds of trees P and Q in a land of 4400sq.m area. Each P tree requires at least 15sq.m and Q tree requires 30sq.m area. The annual water requirement of P tree is 30 units and Q tree requires 20 units. A maximum of 3300 units of water is available annually. It is also estimated that the ratio of number of Q trees to the number of P trees should not be less than 6/19 and not more than 17/8. The return per tree from P is expected to be one and half times as much as from Q tree. Formulate the problem as a LP model.

(06 Marks)

- Define the following terms: i) Feasible solution ii) Optimal solution.

(02 Marks)

Explain the assumptions of simplex method. 2

(06 Marks)

Use graphical method and solve following problem:

Maximize $Z = 6x_1 + 5x_2$

Subject to $x_1 + x_2 \le 5$

$$3x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

(06 Marks)

Define the following terms with an example: i) Slack variable ii) Surplus variable.(04 Marks)

Module-2

Explain the general formulations of the LPP.

(06 Marks)

Using simplex method, solve the following:

Maximize $Z = 4x_1 + 3x_2 + 6x_3$

Subject to $2x_1 + 3x_2 + 2x_3 \le 440$

$$4x_1 + 3x_3 \le 470$$

$$2x_1 + 5x_2 \le 430$$

where
$$x_1, x_2, x_3 \ge 0$$

(10 Marks)

OR

a. Mention the basic steps of Big-M method.

(04 Marks)

b. Solve the following LPP using two-phase method

Maximize $Z = -4x_1 - 3x_2 - 9x_3$

Subject to $2x_1 + 4x_2 + 6x_3 \ge 15$

$$6x_1 + x_2 + 6x_3 \ge 12$$

where
$$x_1, x_2, x_3 \ge 0$$

(12 Marks)

Module-3

What is duality? Explain the relationships between the primal and the dual problems. 5 (08 Marks)

Obtain the dual of the following primal problem:

Maximize $Z = 5x_1 + 6x_2$

Subject to
$$x_1 + 2x_2 = 5$$

$$-x_1 + 5x_2 \ge 3$$

x is unrestricted, $x_2 \ge 0$

(08 Marks)

OR

6 a. Write any 6 key relationship between primal to dual problems.

(06 Marks)

b. Find the dual of the following LPP, solve the dual and hence find the solution to the primal Minimize $Z = 2x_1 + 0x_2 + x_3$

Subject to
$$x_1 + x_2 - x_3 \ge 5$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$

where $x_1, x_2, x_3 \ge 0$

(10 Marks)

Module-4

7 a. Find the initial basic feasible solution for the following problem, and also find the transportation cost using North West Corner Rule.

	4	6	8	8	Supply 40	
	6	10	6	7	60	
	5	7	6	8	50	
mand	20	30	50	50		

(05 Marks)

b. Write the procedure of Vogel's approximation method.

- (06 Marks)
- c. Solve the following problem using Vogel's approximation method:

			_ Y		Supply
	4	6	8	8	40
	6	8	6	7	60
•	5	7	6	8	50
Demand	20	30	50	50	

(05 Marks)

OR

8 a. Three jobs are to be done by 4 machines: Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table:

		Machine				
		M_1	M_2	M_3	M_4	
	J_1	18	24	28	32	
Job	J_2	8	13	17	19	
	J_3	10	15	15	22	

What are the job assignments which will minimize the total cost?

(08 Marks)

b. Obtain the optimum solution for the given problem using MODI method.

- 4	0				The state of the s	
	2	3	11	7	6	
	1	0	6	1	1	
	5	8	15	9	10	(00 Mayles)
	7	5	3	2		(08 Marks)

Module-5

9 a. What is a saddle point? Give an example.

(04 Marks)

b. Explain the maximin-minimax principle. Give an example.

(06 Marks)

c. Solve the following game, determine the optimum strategies and value of the game:

1		- 0	 I CIIC	Saille.
8	-3			
-3	1			(06 Marks)

OR

- Write the short note on the following:
 - a. Metaheuristics
 - b. Tabu search
 - c. Simulated Annealling
 - d. Genetic Algorithms.

(16 Marks)