

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 Compiler Design

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- 1 a. Give the general structure of complier show the working of different phase of compiler taking an example. (10 Marks)
 - b. Write a regular expression for identifier and keyword and design a transition diagram for it.
 (05 Marks)
 - c. Explain the applications of compiler Technology.

(05 Marks)

- 2 a. Show that following grammar is ambiguous $E \rightarrow E + E \mid E * E \mid (E) \mid id$. Write an unambiguous grammar for the same. (08 Marks)
 - b. Write an algorithm to remove the left recursion from a given grammar? Eliminate the left recursion from the given grammar.

 $S \rightarrow aB \mid aC \mid Sd \mid Se$

 $B \rightarrow bBc|f$

 $C \rightarrow g$ (04 Marks)

- c. Give algorithm for FIRST and FOLLOW set construction. Give the same for the grammar $E \to TE'$, $E' \to TE' | \epsilon$, $T \to FT'$, $T' \to *FT' | \epsilon$ $F \to (E) | id$ (08 Marks)
- 3 a. Explain Handle pruning, for the Grammar $S \to SS \mid SS^* \mid$ a and input string aaa * a⁺⁺. Give bottom up parser for the given i/p string. (04 Marks)
 - b. Given the grammar $S \to a \mid (L)$, $L \to L$, $S \mid S$, check whether the given grammar is LL(1) or not. Show the moves made by the predictive parser and the input (a(a, a)). (10 Marks)
 - c. Construct predictive parsing table for the grammar

$$E \rightarrow E + T \mid T, T \rightarrow TF \mid F, F \rightarrow F^* \mid a \mid b$$

(06 Marks)

4 a. Check whether the given grammar is SLR or not

$$E \rightarrow E+T$$
, $E \rightarrow T$, $T \rightarrow T*F|F$, $F \rightarrow (E)|id$

(08 Marks)

- b. Show that the following grammar is $S \to Aa \mid bAc \mid Bc \mid bBa \quad A \to d, B \to d$, is LR(1) but not LALR(1). (08 Marks)
- c. Write short notes on Parser Generators YACC.

(04 Marks)

PART - B

- 5 a. Considering the given grammar
 - $S \to EN, E \to E + T \mid E T \mid T, T \to T * F \mid T / F \mid F, F \to (E) \mid digit, N \to$; obtain the SDD, construct the parse tree, Syntax tree and Annotated parse tree for the string 5 + 6 + 7.

(10 Marks)

b. What are the three address codes? Explain different ways of representing three address codes with example. (10 Marks)

10IS662

- 6 a. Define the following with examples:
 - i) Synthesized attribute
 - ii) Inherited attribute
 - iii) S attributed definition
 - iv) L alternated definition. (10 Marks)
 - b. Using Backpatching, generate an Intermediate code for following expression.

A < B or C < D and P < Q. (10 Marks)

- 7 a. Explain the typical subdivisions of Rantime memory. (10 Marks)
 - b. Explain the following terms:
 - i) Basic Blocks
 - ii) Next use generation
 - iii) flow graphs (10 Marks)
- 8 a. Explain in detail different dynamic storage allocation strategies. (10 Marks)
 - b. Generate the code for following statements for target machine
 - i) x = x + 1
 - ii) x = a + b + c
 - iii) x = a1|(b-c)-d+(e+f) (10 Marks)

* * * * *