

Fifth Semester B.E. Degree Examination, Aug./Sept.2020 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Define following terms:
 - (i) Language (ii) Alphabet (iii) Power set (iv) Powers of an alphabet (v) Null string (05 Marks)
 - b. Design a DFA for accepting strings of 0's and 1's containing two consecutive 0's in it.
 - c. Design a DFA for accepting binary number which are divisible by 5.
- (05 Marks)
- d. Design a DFA for accepting binary number which are divisible by 5.
- (05 Marks)

(05 Marks)

2 a. Convert the following NFA to DFA. [Refer Fig.Q2(a)]

Fig.Q2(a)

(07 Marks)

b. Define \in -NFA and \in -closure.

(03 Marks)

c. Covert the following ∈-NFA to DFA. [Refer Fig.Q2(c)]

Fig.Q2(c)

(06 Marks)

- d. What are the applications of finite automata and regular expressions?
- (04 Marks)

a. State and prove pumping lemma of regular languages.

- (05 Marks)
- b. Prove that the language $L = \{ww^R : w \in \{a, b\}^* \ w^R \text{ is reverse of } w\}$ is not regular.
 - (05 Marks)

c. Prove that regular languages are closed under intersection.

(05 Marks)

d. Prove that regular languages are closed under homomorphism.

- (05 Marks)
- 4 a. Define a context free grammar. Design a CFG which accepts all palindromes over a's and b's.

 (06 Marks)
 - b. Define the following terms:
 - (i) Derivation tree (ii) Yield of a tree (iii) Leftmost derivation
 - (iv) Rightmost derivation

(04 Marks)

c. Design a CFG for accepting arithmetic expressions involving + and * operators. Check if your CFG is an ambiguous grammar or not. If it is an ambiguous grammar, then get an unambiguous grammar for the same.

(10 Marks)

(05 Marks)

Define a PDA and the languages accepted by it.

- Design a NPDA for the language $L = \{a^nb^{2n} : n \ge 0\}$ (05 Marks) Design an NPDA for the language $L = \{ a^n b^k c^m : k = n + m, n \ge 0, m \ge 0 \}$ (05 Marks) d. Convert the following CFG to PDA. $S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$ (05 Marks) When a production becomes useless / nullable? What problem is faced when unit
- productions present in the grammar? Simplify the following CFG to CNF.

 $S \rightarrow aSb \mid bSa \mid \in \mid SS$ (10 Marks)

- b. Define pumping lemma of CFGs. Show that aⁿbⁿcⁿ is not a CFL using the same. (05 Marks)
- c. Prove that context free languages are not closed under intersection and complementation (05 Marks) operations.
- a. Define a Turing Machine. Design a TM for copying string of n 1's present in a tape to its right side. At the end of execution the number of 1's should be 2n in the tape. (10 Marks)
 - b. Design a TM to accept any palindrome of a's and b's. (08 Marks)
 - c. Design a TM that complements a given binary input. (02 Marks)
- Define the diagonalization language. Show that for the language Ld, there is no turing machine exists.
 - b. Define recursive languages. With a diagram explain the relationship of recursive, RE and (06 Marks) non RE languages.
 - What is post correspondence problem? Show that it is undecidable. (04 Marks)