Fifth Semester B.E. Degree Examination, Aug./Sept.2020 **Operating Systems**

Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- Define an operating system. List the operating systems responsibilities in connection with process management and memory management.
 - b. Explain the services provided by an operating system that are designed to make using computer systems more convenient for users.
 - With a neat diagram of VMware architecture, explain the concept of virtual machine and benefits of using virtual machine concept. (08 Marks)
- Describe the function of various schedulers with a block diagram.

b. Explain the three multithreading models.

(06 Marks) (06 Marks)

c. Consider the following set of process with a length of the CPU Burst time given in milliseconds.

Process	Arrival time	Burst time	Priority
P_1	0	7	3
P ₂	3	2	2
P ₃	4	3	1
P ₄	4	1	1
P ₅	5	3	3

- i) Draw Gantt charts illustrating the execution of these processes using Shortest Remaining Time First (SRTF), preemptive priority and round robin scheduling (time slice = 1ms)(a smaller priority number implies higher priority)
- ii) Calculate average waiting time and average turn around time for each of the scheduling algorithm in part(i). (08 Marks)
- Explain critical section problem. Along with an appropriate "C" struct explain the implementation of wait() and signal() semaphore operations. (10 Marks)
 - b. Explain the solution to classical dining philosopher's problem using monitor. (10 Marks)
- What is deadlock? Describe the necessary conditions for a deadlock situation to arise in a
 - b. Explain deadlock detection mechanism for the system with single instance of each resource (05 Marks)
 - c. Consider the following snapshot of a system:

Duagaga	Allocation		Max		Available				
Process	A	В	С	A	В	С	A	В	C
P ₀	0	1	0	7	5	3	3	3	2
P_1	2	0	0	3	2	2			
P_2	3	0	2	9	0	2			
P_3	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

Answer the following questions using Banker's algorithm.

- i) What is the content of matrix NEED?
- ii) Is the system in "Safe State"?
- iii) If the process P1 requests for one additional instance of resource type A and two instances of resource type C, can the request be granted immediately? (10 Marks)

PART – B

5	a.	Consider the following page reference string: 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1	
		for a memory with three frames. How many page faults would occur for LRU,	FIFO and
			(09 Marks)
	1.	OPTIMAL replacement algorithm?	1
	b.	With a neat diagram explain paging with Translation Look aside Buffer (TLB).	(06 Marks)
	C.	Explain commonly used strategies for dynamic storage allocation.	(05 Marks)
			000 fab (000 to) 0000 000
6	a.	List any four common file types along with their extensions and functions.	(04 Marks)
	b.	Explain linked file allocation method, with advantages and disadvantages.	(08 Marks)
	C.	Describe the methods used for implementing directories.	(08 Marks)
7	a.	Suppose that a disk has 200 cylinders numbered from 0 to 99 and the drive i	s currently
		serving a request at cylinder 53. The previous request was at cylinder 70, (i.e, the	disk arm is
		moving towards cylinder 0). The queue of pending requests is 98, 183, 37, 122, 1	
		67. Illustrate the disk movement using FCFS, SSTF and SCAN disk scheduling	
		Also give the total head movement in each case.	(09 Marks)
	b.	Explain sector slipping with an example.	(04 Marks)
	c.	What is access matrix? Explain the implementation of access matrix using access	ess lists for
		objects.	(07 Marks)
			1
8	a.	Explain clone() system case in Linux.	(05 Marks)
O	b.	Explain the components of kernel module support under Linux.	(08 Marks)
		Explain process scheduling in Linux.	(07 Marks)
	C.	Explain process selecting in Linux.	(or marks)