

Seventh Semester B.E. Degree Examination, Aug./Sept. 2020

Aircraft Stability and Control

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Explain longitudinal static stability.

(06 Marks)

- Briefly explain Fuselage contribution to static stability using Multhopp's method. (10 Marks)
- c. For a given body combination, the aerodynamic centre lies 0.05 Chord ahead of C.G. The moment coefficient about the aerodynamic centre is -0.016. If the lift co-efficient is 0.45. calculate the moment coefficient about C.G. (04 Marks)
- 2 Derive an expression for elevator angle verses equilibrium lift coefficient. (10 Marks)
 - Given the general aviation airplane with the following configuration details:

W = 2750 kg

$$V = 176 \text{ m/s}, \qquad X_{cg} = 0.295 \text{ c}, \qquad S = 184 \text{ m}^2, \qquad b = 33.4 \text{ m}, \\ c = 5.7 \text{ m}, \qquad S_t = 43 \text{ m}^2, \qquad \eta = 1.0, \qquad C_{L_{\alpha_t}} = 3.91 \text{ rad}^{-1}.$$

lt = 16 m,

Assume that the pitching moment curve for the landing configuration for the forward most C.G. position is as follows: $C_{m_{eg}} = -0.20 - 0.035\alpha$ where α is in degrees. Estimate the flop

effectiveness parameter and the size of the elevator to trim the airplane at the landing angle of attack of 10°, using Fig.Q2(b). Assume that the elevator angle is constrained to +20° and -25° .

(10 Marks)

Briefly explain Hinge moment parameters and trim tabs.

- (10 Marks)
- b. Derive an expression for stick-free neutral point with necessary graphs and compare it with stick-fixed neutral point. (10 Marks)
- Discuss the relation between stick free, wing moment with relevant equations. (08 Marks)
 - b. The wing fuselage pitching moment characteristics of a high wing experimental, single engined aircraft of NAL (R and D):

 $C_{\text{mcgwf}} = -0.06 - 0.039\alpha$, when α is with respect to FRL AOA is degrees, 'wf' represents wing fuselage. $S_W = 16m^2$, $X_{cg/c} = 0.12$, $b_w = 10.5m$, $AR_w = 7.4 \overline{C}_w = 1.6m$, $C_{L_{\alpha wf}}=0.072/deg,\ l_w=2.3^{\circ}\ C_{L\alpha}=0.28$ (for $\alpha=0$). Estimate the horizontal tail arc and tail incidence angle, if so that the complete airplane has the following pitching moment characteristics.

 $C_{\text{megwft}} = 0.17 - 0.023\alpha$, where α is in degrees and 'wft' represent the wing-fuselagehorizontal tail contribution. Assume the following: $l_t = 4.5 \text{m}$, $\eta = 0.98$, $AR_t = 4.76$, $C_{L} = 0.069/\text{deg}$.

As an aerodynamist provide your comments on design parameters for tail plane location and geometry for longitudinal control for the airplane.

PART - B

- 5 a. What do you understand by roll stability? Explain with sketches the dihedral and wing location (high and low) on fuselage effects. (10 Marks)
 - b. How do you obtain roll control through aileron and spoilers, obtain an expression for roll control power, C_{loa} ? (10 Marks)
- 6 a. Starting with x-force equation, use the small disturbance theory to determine the linearized force equation. Assume a steady level flight for the Reference flight conditions. (10 Marks)
 - b. Derive the equation for motion of a Rigid body.

(10 Marks)

- 7 a. Show that the coefficient C_{mu} depends on the mach number but also is affected by elastic properties of air frame. (10 Marks)
 - b. Obtain derivatives due to the pitching velocity.

(10 Marks)

- 8 a. Determine whether the characteristic equation given below have stable or unstable roots.
 - i) $2\lambda^3 + 4\lambda^2 + 4\lambda + 12 = 0$
 - ii) $A\lambda^4 + B\lambda^3 + C\lambda^2 + D\lambda + E = 0$, where A, B, C, D and E are the functions of the longitudinal stability derivatives. (06 Marks)
 - b. Explain cooper Harper scale.

(07 Marks)

c. Briefly explain Phugoid response and short period response with neat diagram. (07 Marks)