

15AE42

# Fourth Semester B.E. Degree Examination, Aug./Sept. 2020 Aerodynamics - I

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

(06 Marks) ii) Stream lines iii) Streak lines. Define the following: i) Path lines 1 (10 Marks) Derive an expression for energy equation.

- Define Mach number. Explain the classification of flow regimes based on Mach number (10 Marks) with a neat sketch.
  - (06 Marks) b. Obtain the relationship between the stream function and velocity potential.

## Module-2

- Derive an expression for axial forces and normal force acting an airfoil. (10 Marks) 3 (06 Marks)
  - Briefly discuss different types of drag.

- With a neat sketch, explain in detail airfoil nomenclature. (06 Marks) a.
  - Consider an NACA 2412 airfoil with a chord of 0.64m. The free stream velocity is 70m/s, lift per unit span is 1254 N/m. Calculate angle of attack, drag per unit span, and moment per unit span about aerodynamic centre. Given:

 $\alpha = 4^{\circ}$  for  $C_L = 0.65$ ,  $\alpha = 12^{\circ}$  for  $C_L = 1.4$ ,  $C_D = 0.0068$ ,  $C_{m, ac} = -0.05$ ,

 $\mu = 1.789 \times 10^{-5} \text{kg/m.s}, \ \rho = 1.23 \text{kg/m}^3.$ 

(06 Marks)

Define pressure coefficient and aerodynamic center.

(04 Marks)

### Module-3

- Obtain an expression for velocity potential and stream function for a source flow. (06 Marks) (10 Marks)
  - What is Kutta. Joukwski theorem? Obtain an expression for the same.

### OR

- (06 Marks) Briefly explain Kutta condition. (10 Marks)
  - Explain Kelvin's circulation theorem and the starting vortex.

### Module-4

- What is Biot-Savart Law? Obtain the same for vortex and semi vortex filament. (10 Marks)
  - b. Explain how finite wing is simplified to horse shoe vortex. (06 Marks)

- Derive an expression for induced angle of attack and induced drag for elliptical lift (10 Marks) distribution. (06 Marks)
  - With a neat diagram explain downwash.

### Module-5

- Briefly explain: 9
  - i) Formation flying effects

(06 Marks) (06 Marks)

- ii) Ground effects
- iii) Swept back wing

(04 Marks)

OR

- Briefly explain Transonic Area rule. 10
- List different high lift devices with a neat sketch. How do multi element airfoil augment lift. (08 Marks)

\* \* \* \* \*