17AE/AS42

Max. Marks: 100

- Derive the integral form of momentum equation by control volume approach. (10 Marks)
 - An open circuit wind tunnel draws in air from the atmosphere through a well contoured nozzle. In the test section, where the flow is straight and nearly uniform a static pressure top is drilled into the tunnel wall. A monometer connected to the tap shows that the static pressure within the tunnel is 45 mm of water below atmosphere. Assume that air is incompressible and at 25°C, pressure is 100 KPa (absolute). Calculate the velocity in the wind tunnel section. Density of water is 999 kg/m³ and characteristic gas constant for air is (10 Marks)
 - (iv) Angular velocity
 - (10 Marks) (06 Marks)
 - Obtain the relation between stream function and velocity potential function stating its

- Derive the relation to calculate the aerodynamic forces N and A and the momentum $\,M'_{LE}\,\,$ in (10 Marks)
 - b. Consider the velocity field given by $u = \frac{Y}{\left(X^2 + Y^2\right)}$ and $V = \frac{-X}{\left(X^2 + Y^2\right)}$. Calculate the (04 Marks)

(06 Marks)

(08 Marks)

(06 Marks)

(06 Marks)

- Write short notes on the following:
 - (i) Kutta condition.
 - (ii) Kelvin's circulation theorem.

(08 Marks)

Obtain an expression for the following for a lifting flow over cylinder: (i) Stream function (ii) Location of stagnation points (iii) Pressure co-efficient. Also explain with a neat sketch, the location of stagnation points for different values of Γ . (12 Marks)

OR

Derive the relation for lift co-efficient and lift slope for a cambered airfoil based on classical (10 Marks) thin airfoil theory. Consider a thin flat plate at 5 degree angle of attack. Calculate the (i) Lift co-efficient b. (ii) Moment co-efficient about the leading edge (iii) Moment co-efficient about the quarter chord point and (iv) Moment co-efficient about the trailing edge. (10 Marks)

Module-4

Explain and derive Prandtl's lifting theory and its limitation. (12 Marks)

- Explain the following: b.
 - Biot -Savart law. (i)
 - Helmholtz's theorem. (ii)
 - Downwash. (iii)

(08 Marks)

OR

- Prove that induced drag co-efficient is directly proportional to square of lift co-efficient (10 Marks) using elliptical lift distribution.
 - Explain in detail about lifting surface theory and vortex lattice method.

(10 Marks)

Module-5

- Explain the horse-shoe vortex system over a lifting wing. (08 Marks)
 - (04 Marks) Discuss the advantages of swept wings in model airplane.
 - Explain in detail about lift enhancing devices.

(08 Marks)

OR

- Write short note on the following: 10
 - Transonic area rule. (i)
 - Super critical airfoil. (ii)

(08 Marks)

What is critical Mach number and Tip effects?

(04 Marks)

Explain in detail drag divergence.

(08 Marks)