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Abstract. The object of the present paper is to study 3-dimensional (N(k),§)-semi-
Riemannian manifolds. We study (INV(k),§)-semi-Riemannian 3-manifolds which are
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1. Introduction

Let (M,g) be an n-dimensional semi-Riemannian manifold [12] equipped with
a semi-Riemannian metric g. If index(g)=1 then ¢ is a Lorentzian metric and
(M, g) a Lorentzian manifold [4]. If g is positive definite then ¢ is an usual
Riemannian metric and (M, g) a Riemannian manifold. The notion of (N(k),¢)-
semi-Riemannian structure was introduced and studied by Tripathi and Gupta
[21] to unify N(k)-contact metric [3], Sasakian [5], [14], (€)-Sasakian [17], [22],
Kenmotsu [10], para-Sasakian [15], (¢)-para-Sasakian structures [20].
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In this paper we study 3-dimensional (N (k),§)-semi-Riemannian manifolds.
The paper is organized as follows. Section 2 is devoted to some basic defini-
tions and properties of almost contact metric, almost para contact metric and
(N (k), &)-semi-Riemannian manifolds. Further, we prove that an (N (k), £)-semi-
Riemannian 3-manifold is a space form if and only if the scalar curvature r of
the manifold is equal to 6k. In Section 3, we show that a Ricci-semi-symmetric
(N(k),&)-semi-Riemannian 3-manifold is a space-form. In Section 4, a neces-
sary and sufficient condition for an (N(k), £)-semi-Riemannian 3-manifold to be
locally ¢-symmetric is obtained. Section 5 contains some results on (N(k),§)-
semi-Riemannian 3-manifold with n-parallel Ricci tensor.

2. Preliminaries

Let M be an n-dimensional differentiable manifold endowed with an almost con-
tact structure (¢, &,n), where ¢ is a (1, 1)-tensor field, £ is a vector field and 7 is
a 1-form on M satisfying

(2.1) n€) =1, ¢@=-I+n®E¢,

where I denotes the identity transformation. It follows from (2.1) that
(2.2) D6 =0, $(€)=0.

If there exists a semi-Riemannian metric g satisfying

(2.3) 9(0X,9Y) = g(X,Y) —en(X)n(Y), VX,Y € X(M),

where € = +1, then the structure (¢, &, 7, g) is called an (e)-almost contact metric
structure and M is called an (¢€)-almost contact metric manifold. For an (€)-almost
contact metric manifold, we have

(2.4) n(X) =¢€9(X,&) and e = g(£, &) VX € X(M).

When e = 1 and index of g is 0 then M is the usual Sasakian manifold and M is
a Lorentz-Sasakian manifold for ¢ = —1 and index of g is 1.

If dn(X,Y) = g(¢X,Y), then M is said to have (e)-contact metric structure
(9,€,m,g). For e =1 and g Riemannian, M is the usual contact metric manifold
[5]. A contact metric manifold with £ € N(k), is called a N(k)-contact metric
manifold [1, 6]. If moreover, this structure is normal, that is, if

(2.5) [0X, Y]+ ¢*[X, Y] = ¢[X, Y] — §[¢X, Y] = —2dn(X, V)¢,

then the (€)-contact metric structure is called an (¢)-Sasakian structure and the
manifold endowed with this structure is called (€)-Sasakian manifold. The physical
importance of indefinite Sasakian manifolds have been pointed out by Duggal
in [9].
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An (e)-almost contact metric structure (¢, &, 1, g) is (€)-Sasakian if and only if
2.6) (V)Y = g(X,Y)E—en(Y)X, ¥X,Y € x(M),
where V is the Levi-Civita connection with respect to g. Also we have
(2.7) Vx€=—epX VX € X(M).

An almost contact metric manifold is a Kenmotsu manifold [10] if

(2.8) (Vx9)Y = g(¢X,Y)E —n(Y)oX.

By (2.8), we have
Vx§ =X —n(X).
If in (2.1), the condition ¢* = —I + 7 ® £ is replaced by

then (M, g) is called an (e)-almost paracontact metric manifold equipped with an
(€)-almost paracontact metric structure (¢,&,1, g).

An (e)-almost paracontact metric structure is called (€)-para-Sasakian struc-
ture [20] if

(2.10) (Vx9)Y = —g(¢X, ¢Y )& — en(Y)¢*X,

where V is Levi-Civita connection with respect to the metric g. A manifold
endowed with an (€)-para-sasakian structure is called (€)-para-Sasakian manifold
[20]. For € = 1 and g Riemannian, M is the usual para-Sasakian manifold [15].

(N(k),&)-semi-Riemannian manifold
The k-nullity distribution [18] of (M, g) is the distribution
(2.11) N(k): p = N,(k) = {Z € T,M : R(X,Y)Z = k(¢(Y, Z)X — g(X, Z)Y)},

where £ is a real number.

An (N(k), )-semi-Riemannian manifold consists of a semi-Riemannian mani-
fold (M,g), a k-nullity distribution N (k) on (M,g) and a non-null unit vec-
tor field £ in (M, g) belonging to N(k). Throught the paper we assume that
XY, Z, U V.W € X(M), where X(M) is the Lie algebra of vector fields in M,
unless specifically stated otherwise. Let £ be a non null unit vector field in (M, g)
and 7 its associated 1-form. Thus

9(§,8) =€,

where € = 1 or —1 according as £ is spacelike or timelike, and

(2.12) a)g(X,§) = en(X), b)n(§) = 1.
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In an n-dimensional (N (k), §)-semi-Riemannian manifold (M, g), the following
relations hold [21]:

(2.13) R(X,Y)E = ek{n(Y)X —n(X)Y},

(2.14) R X)Y = ek{eg(X, V)¢ —n(Y)X},
(2.15) n(R(X,Y)Z) = k{n(X)g(Y,Z) —n(Y)9(X,2)},
(2.16) S(X,§) = ek(n—1)n(X),

In a 3-dimensional Riemannian manifold we have
(217) R(X,Y)Z = ¢(V,Z2)QX — g(X,Z)QY +S(Y,Z)X — S(X, Z)Y

-5 9. 2)X — (X, 2)Y],

where @ is the Ricci operator, ie., g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold. Putting Z = £ in (2.17) and using (2.13) and (2.16),
we have

(2.18)  em(¥Y)QX —n(X)QY) = (—ek+ 3€) (n(Y)X = n(X)Y).

Putting Y = ¢ in (2.18) and then using (2.12(b)) and (2.16) (for n=3), we get

(219) QX = S{(r —26)X — (r — Ghyn(X)c},
that is,
(2.20) S(X,Y) = %{(r —2k)g(X,Y) —€e(r — 6k)n(X)n(Y)}.

An (N(k), £)-semi-Riemannian manifold M is said to be n-Einstein if its Ricci
tensor S is of the form

(2.21) S(X,Y)=ag(X,Y) + bn(X)nY)

for any vector fields X, Y where a, b are functions on M. Hence from (2.20) we
can state the following:

Lemma 1 A 3-dimensional (N (k),§)-semi-Riemannian manifold is an n-Einstein
manifold.

By using (2.19) and (2.20) in (2.17), we obtain

(222)  R(X,Y)Z = (g - 2k> {9(Y, 2)X — g(X, Z)Y}

— (5 = 3%) Lv. 2)m(X)E - 9(X. Z)n(¥ )¢

+en(Y)n(2)X —en(X)n(Z)Y'}.

An (N(k),&)-semi-Riemannian 3-manifold is a space of constant curvature then
it is an indefinite space form.

Remark. Relations (2.19), (2.20) and (2.22) are true for
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1. An N(k)-contact metric 3-manifold [8] if € = 1,

2. A Sasakian 3-manifold if kK =1 and ¢ = 1,

3. A Kenmotsu 3-manifold [7] if k = —1 and € = 1,

4. An (e)-Sasakian 3-manifold if £ =1 and ek = 1,

5. A para-Sasakian 3-manifold [2] if k = —1 and € = 1,

6. An (¢)-para-Sasakian 3-manifold [19] if k = —e and ek = —1.

Lemma 2 A 3-dimensional (N (k), §)-semi-Riemannian manifold is a space form
iof and only if the scalar curvature r = 6k.

Consequently, for a 3-dimensional (N (k),§)-semi-Riemannian manifold, we
have the following table:

M S = r =
N(k)-contact metric r—2k)g— (r —6k)p®n} | 6k
Sasakian r—2)g—(r—6n®n} 6
Kenmotsu r+2)g—(r+6nen} —6

(e)-Sasakian r—2€)g —€(r —6e)n @n} | be

para-Sasakian r+2)g—(r+6nxn} —6

N [N NI— | N N N |

(€)-para Sasakian r+2€)g—e(r +6e)n@n}t | —6e

Proof. Let a 3-dimensional (N (k), £)-semi-Riemannian manifold be an indefinite
space form. Then

(2.23) RIX,Y)Z =c{g(Y,2)X — g(X,2)Y}, X,Y,Z € X(M),

where c is the constant curvature of the manifold. By using the definition of Ricci
curvature and (2.23) we have

(2.24) S(X,Y)=2c9(X,Y).
If we use (2.24) in the definition of the scalar curvature we get
(2.25) r = 6c.

From (2.24) and (2.25) one can easily see that

(2.26) S(X,Y) = gg(X, Y).

By plugging X =Y = ¢ in (2.20) and using (2.26) we obtain
(2.27) r = 6k.
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Conversely, if r = 6k, then from the equation (2.22) we can easily see that
the manifold is a space form. This completes the proof. n

3. Ricci-semi-symmetric (N(k),{)-semi-Riemannian 3-manifolds

A semi-Riemannian manifold M is said to be Ricci semi-symmetric [13] if its Ricci
tensor S satisfies the condition

(3.28) RIX,Y)-S=0, X,YeX(M),

where R(X,Y) acts as a derivation on S. Ricci-semisymmetric manifold is a gene-
ralization of manifold of constant curvature, Einstein manifold, Ricci symmetric
manifold, symmetric manifold and semisymmetric manifold. Ricci-semisymmetric
condition for Kenmotsu 3-manifolds, (€)-para-Sasakian 3-manifolds and LP-Sasa-
kian 3-manifolds are studied in [7], [19] and [16] respectively.

Let M be a Ricci-semi-symmetric (N (k), £)-semi-Riemannian 3-manifold. From
(3.28) we have

(3.29) S(R(X,Y)U,V) + S(U, R(X,Y)V) = 0.

If we put X = ¢ in (3.29) and use (2.14), then we get

(3.30) kg(Y,U)S(&,V)—eKn(U)S(Y, V)+kg(Y,V)S(U, &) —eKn(V)S(U,Y)=0.
By using (2.16) in (3.30) we obtain

(3.31) eK{2kg(Y,U)n(V) = n(U)S(Y, V) = 2kg(Y,V)n(U) = n(V)S(U,Y)} = 0.

Consider that {ej, e2, e3} be an orthonormal basis of the T, M, p € M. Then, by
putting X = U = ¢; in (2.2) and taking the summation for 1 < i < 3, we have

(3.32) ek{8kn(V) —eS(V,&) —rn(V)} = 0.
Again, by using (2.16) in (3.32), we get
(3.33) ek(6k —r)n(V) =0,

which gives r = 6k. This implies, in view of Lemma 2, that the manifold is a
space form.
Therefore, we have the following;:

Theorem 1 A Ricci-semi-symmetric (N (k), )-semi- Riemannian 3-manifold is a
space form.

From Theorem 1 and the above table, we can state the following corollaries:

Corollary 1 A Ricci-semi-symmetric N(k)-contact metric 3-manifold is a ma-
nifold of constant scalar curvature 6k.
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Corollary 2 A Ricci-semi-symmetric Sasakian 3-manifold is a manifold of con-
stant positive scalar curvature 6.

Corollary 3 [7] A Ricci-semi-symmetric Kenmotsu 3-manifold is a manifold of
constant negative scalar curvature —6.

Corollary 4 A Ricci-semi-symmetric (€)-Sasakian 3-manifold is an indefinite
space form.

Corollary 5 [2] A Ricci-semi-symmetric para-Sasakian 3-manifold is a manifold
of constant negative scalar curvature —6.

Corollary 6 [19] A Ricci-semi-symmetric (€)-para-Sasakian 3-manifold is an in-
definite space form.

4. Locally ¢-symmetric (N(k), £)-semi-Riemannian 3-manifolds

Definition 1 An (N(k),£)-semi-Riemannian manifold is said to be locally ¢-
symmetric if

¢2<VWR>(X7 Y, Z) =0,

for all vector fields W, XY, Z orthogonal to £&. This notion was introduced for
Sasakian manifolds by Takahashi [17].

Now, differentiating (2.22) covariantly with respect to W, we get

(VwR)(X,Y.2) = S(Vwr){o(Y, 2)X — g(X, 2)Y — (¥, Z)n(X)¢
+9(X, Z,(Y)€ — en(Y)n(Z) X + en(X)n(2)Y'}
U= (ot 2)((Tuwn)(X)E +0(X) Vi)

—9(X, 2)(Vwn)(Y)E +n(Y)VwE)
+e(Vwn)(Y)n(2)X + (Vwn)(Z)n(Y) X)
—e(Vun)(X)n(2)Y + (Vwn)(Z)n(X)Y)}.

Taking W, X, Y, Z orthogonal to &, we have

(VwR)(X.Y, Z) = 5 (Vwn){o(Y, 2)X — (X, 2)Y)

(r — 6k)
2

(4.34)

{9(Y, Z)(Vwn)(X)€ — g(X, Z2)(Vwn)(Y)&}.
Applying ¢? on both sides of the above equation and using ¢ - £ = 0, we have

13)  FVwRXY.2) = S(Twn{e(V, 2)8X — g(X, 2)67V ).



122 D.G. PRAKASHA, H.G. NAGARAJA, G. SOMASHEKHARA

Now taking X, Y are orthogonal to &, we obtain

1
(4.36) F(VwR)(X.Y, 2)) =~ (Vwr){g(Y, 2)X — g(X, 2)V'}
Hence from (4.36), we can state the following:

Theorem 2 An (N(k),&)-semi-Riemannian 3-manifold is locally ¢-symmetric if
and only if the scalar curvature r is constant.

If an (N (k), £)-semi-Riemannian 3-manifold is Ricci semi-symmetric, then we
have showed that r = 6k, that is r is constant.

Therefore, from Theorem (2), we have

Theorem 3 A Ricci-semi-symmetric (N(k),&)-semi-Riemannian 3-manifold is
locally ¢-symmetric.

5. (N(k),&)-semi-Riemannian 3-manifold with n-parallel Ricci tensor

Definition 2 The Ricci tensor S of an (N(k), {)-semi-Riemannian manifold M
is called n-parallel if it satisfies

(5.37) (V28)(6X,6Y) = 0

for all vector fields X,Y and Z. The notion of Ricci-n-parallelity for Sasakian
manifolds was introduced by Kon in [11].

Now, let us consider a 3-dimensional (INV(k),&)-semi-Riemannian manifold
with n-parallel Ricci tensor. Then, from (2.20), we get

(5.39) S(6X,6Y) = 50— 2W)lg(0X, 6]

Differentiating (5.38) covariantly along Z, we have

(5.39) (V28)(6X,67) = 5dr(Z)g(6X, 67 ).

If the Ricci tensor is n-parallel, then from (5.37) and (5.39) one can get
%dr(Z)ngX, oY) = 0.

From which, it follows that
dr(Z) =0,

for all Z. This leads us to the following:
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Theorem 4 Let M be an (N(k),§)-semi-Riemannian 3-manifold with n-parallel
Ricci tensor. The the scalar curvature r is constant.

In view of Theorem (2) and Theorem (4), we have the following:

Theorem 5 An (N(k),§)-semi-Riemannian 3-manifold with n-parallel Ricci ten-
sor s locally ¢-symmetric.
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