# ON $(N(k),\xi)$ -semi-Riemannian 3-manifolds

Article  $\it in$  Italian Journal of Pure and Applied Mathematics  $\cdot$  January 2014

CITATIONS

0

READS

24

3 authors:



D.G. Prakasha

Karnatak University, Dharwad

**54** PUBLICATIONS **119** CITATIONS

SEE PROFILE



Somashekhara Ganganna

M S Ramaiah School of Advanced Studies

11 PUBLICATIONS 27 CITATIONS

SEE PROFILE



Hg Nagaraja

Bangalore University

40 PUBLICATIONS 64 CITATIONS

SEE PROFILE

# ON $(N(k), \xi)$ -SEMI-RIEMANNIAN 3-MANIFOLDS

#### D.G. Prakasha

Department of Mathematics Karnatak University Dharwad – 580 003 India e-mail: prakashadq@qmail.com

## H.G. Nagaraja

Department of Mathematics Central College Campus Bangalore University Bangalore India e-mail: hqnraj@yahoo.com

#### G. Somashekhara

Department of Mathematics Acharya Institute of Technology Soldevanahalli Bangalore – 560107 India

**Abstract.** The object of the present paper is to study 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifolds. We study  $(N(k), \xi)$ -semi-Riemannian 3-manifolds which are Ricci-semi-symmetric, locally  $\phi$ -symmetric and have  $\eta$ -parallel Ricci tensor.

Key words and phrases:  $(N(k), \xi)$ -semi-Riemannian 3-manifold, Ricci-semi-symmetric, locally  $\phi$ -symmetric,  $\eta$ -parallel Ricci tensor,  $\eta$ -Einstein manifold.

**MSC(2000):** 53C25, 53C50.

#### 1. Introduction

Let (M,g) be an n-dimensional semi-Riemannian manifold [12] equipped with a semi-Riemannian metric g. If  $\operatorname{index}(g)=1$  then g is a Lorentzian metric and (M,g) a Lorentzian manifold [4]. If g is positive definite then g is an usual Riemannian metric and (M,g) a Riemannian manifold. The notion of  $(N(k),\xi)$ -semi-Riemannian structure was introduced and studied by Tripathi and Gupta [21] to unify N(k)-contact metric [3], Sasakian [5], [14],  $(\epsilon)$ -Sasakian [17], [22], Kenmotsu [10], para-Sasakian [15],  $(\epsilon)$ -para-Sasakian structures [20].

In this paper we study 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifolds. The paper is organized as follows. Section 2 is devoted to some basic definitions and properties of almost contact metric, almost para contact metric and  $(N(k), \xi)$ -semi-Riemannian manifolds. Further, we prove that an  $(N(k), \xi)$ -semi-Riemannian 3-manifold is a space form if and only if the scalar curvature r of the manifold is equal to 6k. In Section 3, we show that a Ricci-semi-symmetric  $(N(k), \xi)$ -semi-Riemannian 3-manifold is a space-form. In Section 4, a necessary and sufficient condition for an  $(N(k), \xi)$ -semi-Riemannian 3-manifold to be locally  $\phi$ -symmetric is obtained. Section 5 contains some results on  $(N(k), \xi)$ -semi-Riemannian 3-manifold with  $\eta$ -parallel Ricci tensor.

#### 2. Preliminaries

Let M be an n-dimensional differentiable manifold endowed with an almost contact structure  $(\phi, \xi, \eta)$ , where  $\phi$  is a (1, 1)-tensor field,  $\xi$  is a vector field and  $\eta$  is a 1-form on M satisfying

(2.1) 
$$\eta(\xi) = 1, \quad \phi^2 = -I + \eta \otimes \xi,$$

where I denotes the identity transformation. It follows from (2.1) that

$$(2.2) \eta \cdot \phi = 0, \quad \phi(\xi) = 0.$$

If there exists a semi-Riemannian metric q satisfying

(2.3) 
$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y), \quad \forall X, Y \in \mathcal{X}(M),$$

where  $\epsilon = \pm 1$ , then the structure  $(\phi, \xi, \eta, g)$  is called an  $(\epsilon)$ -almost contact metric structure and M is called an  $(\epsilon)$ -almost contact metric manifold. For an  $(\epsilon)$ -almost contact metric manifold, we have

(2.4) 
$$\eta(X) = \epsilon g(X, \xi) \text{ and } \epsilon = g(\xi, \xi) \ \forall X \in \mathcal{X}(M).$$

When  $\epsilon = 1$  and index of g is 0 then M is the usual Sasakian manifold and M is a Lorentz-Sasakian manifold for  $\epsilon = -1$  and index of g is 1.

If  $d\eta(X,Y) = g(\phi X,Y)$ , then M is said to have  $(\epsilon)$ -contact metric structure  $(\phi,\xi,\eta,g)$ . For  $\epsilon=1$  and g Riemannian, M is the usual contact metric manifold [5]. A contact metric manifold with  $\xi \in N(k)$ , is called a N(k)-contact metric manifold [1, 6]. If moreover, this structure is normal, that is, if

$$(2.5) [\phi X, \phi Y] + \phi^2[X, Y] - \phi[X, \phi Y] - \phi[\phi X, Y] = -2d\eta(X, Y)\xi,$$

then the  $(\epsilon)$ -contact metric structure is called an  $(\epsilon)$ -Sasakian structure and the manifold endowed with this structure is called  $(\epsilon)$ -Sasakian manifold. The physical importance of indefinite Sasakian manifolds have been pointed out by Duggal in [9].

An  $(\epsilon)$ -almost contact metric structure  $(\phi, \xi, \eta, g)$  is  $(\epsilon)$ -Sasakian if and only if

$$(2.6) (\nabla_X \phi) Y = g(X, Y) \xi - \epsilon \eta(Y) X, \quad \forall X, Y \in \chi(M),$$

where  $\nabla$  is the Levi-Civita connection with respect to g. Also we have

(2.7) 
$$\nabla_X \xi = -\epsilon \phi X \quad \forall X \in \chi(M).$$

An almost contact metric manifold is a Kenmotsu manifold [10] if

(2.8) 
$$(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X.$$

By (2.8), we have

$$\nabla_X \xi = X - \eta(X)\xi.$$

If in (2.1), the condition  $\phi^2 = -I + \eta \otimes \xi$  is replaced by

$$\phi^2 = I - \eta \otimes \xi$$

then (M, g) is called an  $(\epsilon)$ -almost paracontact metric manifold equipped with an  $(\epsilon)$ -almost paracontact metric structure  $(\phi, \xi, \eta, g)$ .

An  $(\epsilon)$ -almost paracontact metric structure is called  $(\epsilon)$ -para-Sasakian structure [20] if

$$(2.10) \qquad (\nabla_X \phi) Y = -g(\phi X, \phi Y) \xi - \epsilon \eta(Y) \phi^2 X,$$

where  $\nabla$  is Levi-Civita connection with respect to the metric g. A manifold endowed with an  $(\epsilon)$ -para-sasakian structure is called  $(\epsilon)$ -para-Sasakian manifold [20]. For  $\epsilon = 1$  and g Riemannian, M is the usual para-Sasakian manifold [15].

# $(N(k),\xi)$ -semi-Riemannian manifold

The k-nullity distribution [18] of (M, g) is the distribution

$$(2.11) \ N(k): p \to N_p(k) = \{Z \in T_pM: R(X,Y)Z = k(g(Y,Z)X - g(X,Z)Y)\},\$$

where k is a real number.

An  $(N(k), \xi)$ -semi-Riemannian manifold consists of a semi-Riemannian manifold (M, g), a k-nullity distribution N(k) on (M, g) and a non-null unit vector field  $\xi$  in (M, g) belonging to N(k). Throught the paper we assume that  $X, Y, Z, U, V, W \in \chi(M)$ , where  $\chi(M)$  is the Lie algebra of vector fields in M, unless specifically stated otherwise. Let  $\xi$  be a non-null unit vector field in (M, g) and  $\eta$  its associated 1-form. Thus

$$q(\xi, \xi) = \epsilon$$

where  $\epsilon = 1$  or -1 according as  $\xi$  is spacelike or timelike, and

(2.12) 
$$a)g(X,\xi) = \epsilon \eta(X), \quad b)\eta(\xi) = 1.$$

In an *n*-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold (M, g), the following relations hold [21]:

$$(2.13) R(X,Y)\xi = \epsilon k \{ \eta(Y)X - \eta(X)Y \},$$

$$(2.14) R(\xi, X)Y = \epsilon k \{ \epsilon g(X, Y)\xi - \eta(Y)X \},$$

(2.15) 
$$\eta(R(X,Y)Z) = k\{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\},\$$

$$(2.16) S(X,\xi) = \epsilon k(n-1)\eta(X),$$

In a 3-dimensional Riemannian manifold we have

(2.17) 
$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y - \frac{r}{2} [g(Y,Z)X - g(X,Z)Y],$$

where Q is the Ricci operator, i.e., g(QX,Y) = S(X,Y) and r is the scalar curvature of the manifold. Putting  $Z = \xi$  in (2.17) and using (2.13) and (2.16), we have

(2.18) 
$$\epsilon(\eta(Y)QX - \eta(X)QY) = \left(-\epsilon k + \frac{r}{2}\epsilon\right)(\eta(Y)X - \eta(X)Y).$$

Putting  $Y = \xi$  in (2.18) and then using (2.12(b)) and (2.16) (for n=3), we get

(2.19) 
$$QX = \frac{1}{2} \{ (r - 2k)X - (r - 6k)\eta(X)\xi \},$$

that is,

(2.20) 
$$S(X,Y) = \frac{1}{2} \{ (r-2k)g(X,Y) - \epsilon(r-6k)\eta(X)\eta(Y) \}.$$

An  $(N(k), \xi)$ -semi-Riemannian manifold M is said to be  $\eta$ -Einstein if its Ricci tensor S is of the form

$$(2.21) S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$$

for any vector fields X, Y where a, b are functions on M. Hence from (2.20) we can state the following:

**Lemma 1** A 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold is an  $\eta$ -Einstein manifold.

By using (2.19) and (2.20) in (2.17), we obtain

$$(2.22) R(X,Y)Z = \left(\frac{r}{2} - 2k\right) \left\{g(Y,Z)X - g(X,Z)Y\right\}$$

$$-\left(\frac{r}{2} - 3k\right) \left\{g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi\right\}$$

$$+\epsilon\eta(Y)\eta(Z)X - \epsilon\eta(X)\eta(Z)Y\right\}.$$

An  $(N(k), \xi)$ -semi-Riemannian 3-manifold is a space of constant curvature then it is an indefinite space form.

**Remark.** Relations (2.19), (2.20) and (2.22) are true for

- 1. An N(k)-contact metric 3-manifold [8] if  $\epsilon = 1$ ,
- 2. A Sasakian 3-manifold if k = 1 and  $\epsilon = 1$ ,
- 3. A Kenmotsu 3-manifold [7] if k = -1 and  $\epsilon = 1$ ,
- 4. An  $(\epsilon)$ -Sasakian 3-manifold if k=1 and  $\epsilon k=1$ ,
- 5. A para-Sasakian 3-manifold [2] if k = -1 and  $\epsilon = 1$ ,
- 6. An  $(\epsilon)$ -para-Sasakian 3-manifold [19] if  $k = -\epsilon$  and  $\epsilon k = -1$ .

**Lemma 2** A 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold is a space form if and only if the scalar curvature r = 6k.

Consequently, for a 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold, we have the following table:

| M                           | S =                                                                      | r =          |
|-----------------------------|--------------------------------------------------------------------------|--------------|
| N(k)-contact metric         | $\frac{1}{2}\{(r-2k)g-(r-6k)\eta\otimes\eta\}$                           | 6k           |
| Sasakian                    | $\frac{1}{2}\{(r-2)g-(r-6)\eta\otimes\eta\}$                             | 6            |
| Kenmotsu                    | $\frac{1}{2}\{(r+2)g - (r+6)\eta \otimes \eta\}$                         | -6           |
| $(\epsilon)$ -Sasakian      | $\frac{1}{2}\{(r-2\epsilon)g - \epsilon(r-6\epsilon)\eta \otimes \eta\}$ | $6\epsilon$  |
| para-Sasakian               | $\frac{1}{2}\{(r+2)g - (r+6)\eta \otimes \eta\}$                         | -6           |
| $(\epsilon)$ -para Sasakian | $\frac{1}{2}\{(r+2\epsilon)g - \epsilon(r+6\epsilon)\eta \otimes \eta\}$ | $-6\epsilon$ |

**Proof.** Let a 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold be an indefinite space form. Then

$$(2.23) R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}, X,Y,Z \in X(M),$$

where c is the constant curvature of the manifold. By using the definition of Ricci curvature and (2.23) we have

$$(2.24) S(X,Y) = 2cg(X,Y).$$

If we use (2.24) in the definition of the scalar curvature we get

$$(2.25) r = 6c.$$

From (2.24) and (2.25) one can easily see that

(2.26) 
$$S(X,Y) = \frac{r}{3}g(X,Y).$$

By plugging  $X = Y = \xi$  in (2.20) and using (2.26) we obtain

$$(2.27) r = 6k.$$

Conversely, if r = 6k, then from the equation (2.22) we can easily see that the manifold is a space form. This completes the proof.

# 3. Ricci-semi-symmetric $(N(k), \xi)$ -semi-Riemannian 3-manifolds

A semi-Riemannian manifold M is said to be Ricci semi-symmetric [13] if its Ricci tensor S satisfies the condition

$$(3.28) R(X,Y) \cdot S = 0, \quad X,Y \in \chi(M),$$

where R(X,Y) acts as a derivation on S. Ricci-semisymmetric manifold is a generalization of manifold of constant curvature, Einstein manifold, Ricci symmetric manifold, symmetric manifold and semisymmetric manifold. Ricci-semisymmetric condition for Kenmotsu 3-manifolds, ( $\epsilon$ )-para-Sasakian 3-manifolds and LP-Sasakian 3-manifolds are studied in [7], [19] and [16] respectively.

Let M be a Ricci-semi-symmetric  $(N(k),\xi)$ -semi-Riemannian 3-manifold. From (3.28) we have

$$(3.29) S(R(X,Y)U,V) + S(U,R(X,Y)V) = 0.$$

If we put  $X = \xi$  in (3.29) and use (2.14), then we get

$$(3.30) kg(Y, U)S(\xi, V) - \epsilon K \eta(U)S(Y, V) + kg(Y, V)S(U, \xi) - \epsilon K \eta(V)S(U, Y) = 0.$$

By using (2.16) in (3.30) we obtain

$$(3.31) \ \epsilon K\{2kg(Y,U)\eta(V) - \eta(U)S(Y,V) - 2kg(Y,V)\eta(U) - \eta(V)S(U,Y)\} = 0.$$

Consider that  $\{e_1, e_2, e_3\}$  be an orthonormal basis of the  $T_pM$ ,  $p \in M$ . Then, by putting  $X = U = e_i$  in (2.2) and taking the summation for  $1 \le i \le 3$ , we have

(3.32) 
$$\epsilon k \{8k\eta(V) - \epsilon S(V, \xi) - r\eta(V)\} = 0.$$

Again, by using (2.16) in (3.32), we get

$$(3.33) \qquad \epsilon k(6k - r)\eta(V) = 0,$$

which gives r = 6k. This implies, in view of Lemma 2, that the manifold is a space form.

Therefore, we have the following:

**Theorem 1** A Ricci-semi-symmetric  $(N(k), \xi)$ -semi-Riemannian 3-manifold is a space form.

From Theorem 1 and the above table, we can state the following corollaries:

Corollary 1 A Ricci-semi-symmetric N(k)-contact metric 3-manifold is a manifold of constant scalar curvature 6k.

Corollary 2 A Ricci-semi-symmetric Sasakian 3-manifold is a manifold of constant positive scalar curvature 6.

Corollary 3 [7] A Ricci-semi-symmetric Kenmotsu 3-manifold is a manifold of constant negative scalar curvature -6.

Corollary 4 A Ricci-semi-symmetric  $(\epsilon)$ -Sasakian 3-manifold is an indefinite space form.

Corollary 5 [2] A Ricci-semi-symmetric para-Sasakian 3-manifold is a manifold of constant negative scalar curvature -6.

Corollary 6 [19] A Ricci-semi-symmetric ( $\epsilon$ )-para-Sasakian 3-manifold is an indefinite space form.

# 4. Locally $\phi$ -symmetric $(N(k), \xi)$ -semi-Riemannian 3-manifolds

**Definition 1** An  $(N(k), \xi)$ -semi-Riemannian manifold is said to be locally  $\phi$ -symmetric if

$$\phi^2(\nabla_W R)(X, Y, Z) = 0,$$

for all vector fields W, X, Y, Z orthogonal to  $\xi$ . This notion was introduced for Sasakian manifolds by Takahashi [17].

Now, differentiating (2.22) covariantly with respect to W, we get

$$(\nabla_W R)(X,Y,Z) = \frac{1}{2}(\nabla_W r)\{g(Y,Z)X - g(X,Z)Y - g(Y,Z)\eta(X)\xi + g(X,Z_{\eta}(Y)\xi - \epsilon\eta(Y)\eta(Z)X + \epsilon\eta(X)\eta(Z)Y\}$$

$$-\frac{(r-6k)}{2}\{g(Y,Z)((\nabla_W \eta)(X)\xi + \eta(X)\nabla_W \xi) - g(X,Z)((\nabla_W \eta)(Y)\xi + \eta(Y)\nabla_W \xi) + \epsilon((\nabla_W \eta)(Y)\eta(Z)X + (\nabla_W \eta)(Z)\eta(Y)X)$$

$$-\epsilon((\nabla_W \eta)(X)\eta(Z)Y + (\nabla_W \eta)(Z)\eta(X)Y)\}.$$

Taking W, X, Y, Z orthogonal to  $\xi$ , we have

(4.34) 
$$(\nabla_W R)(X, Y, Z) = \frac{1}{2} (\nabla_W r) \{ g(Y, Z) X - g(X, Z) Y \}$$
$$- \frac{(r - 6k)}{2} \{ g(Y, Z) (\nabla_W \eta)(X) \xi - g(X, Z) (\nabla_W \eta)(Y) \xi \}.$$

Applying  $\phi^2$  on both sides of the above equation and using  $\phi \cdot \xi = 0$ , we have

(4.35) 
$$\phi^2((\nabla_W R)(X, Y, Z)) = \frac{1}{2}(\nabla_W r)\{g(Y, Z)\phi^2 X - g(X, Z)\phi^2 Y\}.$$

Now taking X, Y are orthogonal to  $\xi$ , we obtain

(4.36) 
$$\phi^{2}((\nabla_{W}R)(X,Y,Z)) = -\frac{1}{2}(\nabla_{W}r)\{g(Y,Z)X - g(X,Z)Y\}$$

Hence from (4.36), we can state the following:

**Theorem 2** An  $(N(k), \xi)$ -semi-Riemannian 3-manifold is locally  $\phi$ -symmetric if and only if the scalar curvature r is constant.

If an  $(N(k), \xi)$ -semi-Riemannian 3-manifold is Ricci semi-symmetric, then we have showed that r = 6k, that is r is constant.

Therefore, from Theorem (2), we have

**Theorem 3** A Ricci-semi-symmetric  $(N(k), \xi)$ -semi-Riemannian 3-manifold is locally  $\phi$ -symmetric.

# 5. $(N(k), \xi)$ -semi-Riemannian 3-manifold with $\eta$ -parallel Ricci tensor

**Definition 2** The Ricci tensor S of an  $(N(k), \xi)$ -semi-Riemannian manifold M is called  $\eta$ -parallel if it satisfies

$$(5.37) \qquad (\nabla_Z S)(\phi X, \phi Y) = 0$$

for all vector fields X, Y and Z. The notion of Ricci- $\eta$ -parallelity for Sasakian manifolds was introduced by Kon in [11].

Now, let us consider a 3-dimensional  $(N(k), \xi)$ -semi-Riemannian manifold with  $\eta$ -parallel Ricci tensor. Then, from (2.20), we get

(5.38) 
$$S(\phi X, \phi Y) = \frac{1}{2}(r - 2k)[g(\phi X, \phi Y)].$$

Differentiating (5.38) covariantly along Z, we have

(5.39) 
$$(\nabla_Z S)(\phi X, \phi Y) = \frac{1}{2} dr(Z) g(\phi X, \phi Y).$$

If the Ricci tensor is  $\eta$ -parallel, then from (5.37) and (5.39) one can get

$$\frac{1}{2}dr(Z)g(\phi X,\phi Y) = 0.$$

From which, it follows that

$$dr(Z) = 0,$$

for all Z. This leads us to the following:

**Theorem 4** Let M be an  $(N(k), \xi)$ -semi-Riemannian 3-manifold with  $\eta$ -parallel Ricci tensor. The the scalar curvature r is constant.

In view of Theorem (2) and Theorem (4), we have the following:

**Theorem 5** An  $(N(k), \xi)$ -semi-Riemannian 3-manifold with  $\eta$ -parallel Ricci tensor is locally  $\phi$ -symmetric.

**Acknowledgement.** The first author (DGP) is thankful to University Grants Commission, New Delhi, India for financial support in the form of Major Research Project [F.No. 39-30/2010 (SR), dated: 23-12-2012].

## References

- [1] BAGEWADI, C.S., PRAKASHA, D.G., VENKATESHA, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math., 43 (1)(2007), 115-126.
- [2] BAGEWADI, C.S., BASAVARAJAPPA, N.S., PRAKASHA, D.G., VENKATESHA, On 3-dimensional para-Sasakian manifolds, Int. e-Jour Engg. Math.: Theory and Application, 2 (2007), 110-119.
- [3] BAIKOUSSIS, CH., BLAIR, D.E., KOUFORGIORGOS, TH., A decomposition of the curvature tensor of a contact manifold satisfying  $R(X,Y)\xi = k(\eta(Y)X \eta(X)Y)$ , Mathematical Technical Report, University of Iranniaana, 1992.
- [4] BEEM, J.K., EHRLICH, P.E., Global Lorentzian geometry, Marcel Dekker, New York, 1981.
- [5] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 509 (1976), 146.
- [6] Blair, D.E., Kim, J.S., Tripathi, M.M. On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42 (5)(2005), 883-892.
- [7] DE, U.C., PATHAK, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35 (2)(2004), 159-165.
- [8] DE, U.C., GAZI, A.K., On  $\phi$ -recurrent N(k)-contact metric manifolds, Math. J. Okayama Univ., 50 (2008), 101-112.
- [9] DUGGAL, K.L., Space time manifolds and contact structures, Int. J. Math & Math. Sc., 13 (3) (1990), 55-553.

- [10] Kenmotsu, K., A class of almost contact Riemannian manifold, Tohoku Math. J., 24 (2) (1972), 93-103.
- [11] Kon, M., Invariant submanifolds in Sasakian manifolds, Math. Annalen, 219 (1976), 277-290.
- [12] O'NEILL, B., Semi-Rimannain geometry with applications to relativity, Academic Press, New York, London, 1983.
- [13] MIRZOYAN, V.A., Structure theorems for Riemannian Ric-semisymmetric spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 6 (1992), 80-89.
- [14] Sasaki, S., On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J., 12 (1960), 459-476.
- [15] Sato, I., On a structures similar to the almost contact structure, Tensor (N.S.), 30 (3) (1976), 219-224.
- [16] SHAIKH, A.A., DE, U.C., On 3-dimensional LP-Sasakian manifolds, Soochow J. Math., 26 (4) (2000), 359-368.
- [17] TAKAHASHI, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Math.J., 21 (1969), 271-290.
- [18] TANNO, S., Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.
- [19] TRIPATHI, M.M., KIHC, E., YUKSEL PERKTAS, S., KELES, S.,  $On(\epsilon)$ -para Sasakian 3-manifolds, arXiv:0911.4786v2 [math.DG] 1 Dec 2009.
- [20] TRIPATHI, M.M., KIHC, E., YUKSEL PERKTAS, S., KELES, S., Indefinite almost paracontact metric manifolds, Int. J. Math. Math. Sci., doi:10.1155/2010/846195.
- [21] TRIPATHI, M.M., GUPTA, P., On  $(N(k), \xi)$ -semi-Riemannian manifolds: Semisymmetries, Int. Electron. J. Geom., 5 (1) (2012), 42-77.
- [22] XUFENG, X., XIAOLI, C., Two theorems on  $(\epsilon)$ -Sasakian manifolds, Int. J. Math. & Math. Sci., 21 (2) (1998), 249-254.

Accepted: 12.02.2013