18CAE321

hird Semester M.Tech. Degree Examination, Dec.2019/Jan.2020 Experimental Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain generalized measurement system with an example.

(12 Marks)

b. Discuss the type of errors that may cause uncertainty in experimental measurement.

(08 Marks)

OR

2 a. The following readings are taken of a certain physical length compute the mean reading standard deviation, variance and average of absolute value of deviation using the 'biased' basis:

Reading	1	2	3	4	5	6	7	8	9	10
x(cm)	5.30	5.73	6.77	5.26	4.33	5.45	6.09	5.64	5.85	5.75

(10 Marks)

- b. Write a brief note on following:
 - i) Probability distributions
 - ii) Chi-square test of goodness fit.

(10 Marks)

Module-2

- 3 a. What are the major elements of data acquisition and processing system? Explain with block diagram major elements of data acquisition system. (08 Marks)
 - b. What are the difference between active and passive filters?

(04 Marks)

c. With a net sketch explain the following: i) Proving Ring ii) Prony Brake.

(08 Marks)

OR

- a. A three element rectangular rosette is mounted on a loaded member one of the axis of strain gauge is along x-axis and other axis along two direction which makes an angle of 45° and 90° with the reference axis. The indicated strains are $\epsilon_0 = 850 \mu \text{m/m}$, $\epsilon_{45} = -50 \mu \text{m/m}$, $\epsilon_{90} = 850 \mu \text{m/m}$, considering a transverse sensitivity factors $K_t = 0.06$ determine:
 - i) Actual strains
 - ii) Principal strain and stress
 - iii) Error in principal stress value if indicated strains are used. Assume E = 200GPa, Poisson ratio = 0.285. (14 Marks)
 - b. With neat sketch, describe the Wheatstone bridge circuit used for strain measurement.

(06 Marks)

Module-3

- 5 a. State and explain stress-optic law for 2-D photo-elasticity and derive an expression for fringe order using stress optic law. (08 Marks)
 - b. Give a physical interpretation of formation of Isoclinics and Isochromatics in a plane polariscope interposed with a 2-D photoelastic model in a plane stress condition. (12 Marks)

OR

- 6 a. Sketch and explain oblique incidence method of separation of principal stresses. (08 Marks)
 - b. Write a detailed note on following:
 - i) Calibration of photo-elastic material
 - ii) Fringe multiplication technique.

(12 Marks)

Module-4

- 7 a. Explain stress Freezing technique for 3-D photoelastic model. Explain how this technique can be descried using spring—Ice analogy. (12 Marks)
 - b. Explain in brief how shear difference method of separation can be applied for stress frozen 3-D model. (08 Marks)

OR

- 8 a. Explain the principle of scattered light photo-elasticity. Explain how this scattering techniques can be used as polarizer and analyzer. (12 Marks)
 - b. With net sketch, explain the working of scattered light polariscope.

(08 Marks)

Module-5

- 9 a. Explain theory of Birefringence coating and derive the expression for principal stress difference in terms of photo-elastic data obtained at a point. (12 Marks)
 - b. Explain the principle of Brittle coating technique and enumerate the advantages and disadvantages of this technique.

 (08 Marks)

OR

- 10 a. State the two approaches used to analyze fringes in Moiré method. Explain the geometric approach used for pure extension without rotation case of Moiré model. (08 Marks)
 - b. What is holography? Explain with sketch Recording and Reconstruction process in Holography. (12 Marks)

* * * *