Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

15MT755

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 Artificial Neural Networks

Time: 3 hrs.

NGALOR

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Draw and explain the artificial neuron model. Explain how activations measure similarity.
 (08 Marks)
 - b. List any four neuron signal function and their characteristics used in ANN. (08 Marks)

OR

- 2 a. State and explain, XOR is non-linearly separable. Also explain the implementation of XOR function using two layered network architecture. (10 Marks)
 - b. Explain feed forward and feedback architecture for neural networks. (06 Marks)

Module-2

- 3 a. Discuss α LMS algorithm. Explain the computational steps. (08 Marks)
 - With example, explain the application of LMS algorithm to noise application. (08 Marks)

OR

- 4 a. Discuss the weight update procedure in steepest descent search algorithm. (08 Marks)
 - b. Discuss square error performance function with respect to back propagation learning algorithm. (08 Marks)

Module-3

- 5 a. What are the design objectives of SVM? Derive an expression for the total margin in two class SVM. (08 Marks)
 - b. Compare RBF with support vector machine.

g.

- OR

 6 a. Discuss K-mean clustering algorithm in RBF Neural networks. (08 Marks)
 - b. Explain the application of SVM in image classification.

(08 Marks)

(08 Marks)

Module-4

- 7 a. Draw the architecture of hop field auto-associative memory. Also explain electronic circuit interpretation of additive dynamic structure of Hopfield network. (08 Marks)
 - b. Explain Brain state in a box neural network, provide the algorithm. (08 Marks)

OR

- 8 a. Explain simulated annealing, provide the steps used in simulated annealing. (08 Marks)
 - b. Write the similarities and differences between Hopfield network and Boltzmann machine.
 (08 Marks)

Module-5

9 a. Explain the concept of dimensionality reduction using principal component analysis.

(08 Marks)

b. Explain Linear vector quantization algorithm.

(08 Marks)

OR

10 a. Explain the concept of Kohonen self organizing feature maps.

(08 Marks)

b. Explain the growing neural gas algorithm.

(08 Marks)

* * * * *