LECHNO

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Signal Processing**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the even and odd component for the given signal 1

(04 Marks)

Fig.Q.1(a)

sketch the signal.

Find whether it is periodic or not, and find the energy signal.

(06 Marks)

- Sketch: i) x(2t + 3)
- ii) x(-t-3)
- iii) x(-2t + 2)

(06 Marks)

Fig.Q.1(c)

For the given signal x(t)

Sketch: i) x(t) u(t-1)

ii) x(t) u(1-t) iii) $x(t) \delta(t-3/2)$

iv) $x(t) \{u(t) - u(t-1)\}$. (08 Marks)

Find the even and odd component for the given signal

(04 Marks)

Define a signal. Mention the different classification of signal.

(04 Marks)

- For the given question, $x(n) = \{3, 3, 2\}$ and $h(n) = \{1, 2\}$. Find output is convolution sum 3
 - b. Find the convolution integral y(t) for the given signal, and sketch the o/p y(t)

$$x(t) = u(t+1)$$

$$h(t) = u(t - 2)$$

(08 Marks)

Find the convolution integral y(t) for given signal.

$$x(t) = u(t-2) - u(t-4)$$

$$h(t) = u(t) - u(t-2)$$
, sketch the output signal $y(t)$.

(08 Marks)

b. Find the convolution sum y(n) for given signal

$$x(n) = u(n-2)$$

h(n) = u(n-6) sketch the

output signal y(n).

(08 Marks)

Module-3

- a. For $x(n) = \{1, 2, 2, 1\}$ find DFT by Twiddle factor matrix method. (04 Marks)
 - b. Prove properties of Twiddle factor: i) Periodicity ii) Symmetry. (06 Marks)
 - c. For $x(k) = \{10, -2+2j, -2, -2, -2j\}$ find 4pt IDFT using DITFFT. (06 Marks)

OR

- a. For $x(n) = \delta(n)$ find N pt DFT.
 - (04 Marks) b. For $x(n) = \{2, 3, -1, 1, 3, 2, 4, 1, 2, 2\}$, $h(n) = \{1, 1, 1\}$ take block as 5 find
 - y(n) = x(n) * h(n) by overlap save method. (08 Marks) c. For $x(n) = \{1, 2, 2, 1\}$ find DFT using DIFFFT. (04 Marks)

Module-4

a. Distinguish between Butterworth and Chebyshev filter.

(06 Marks)

b. Design Chebyshev low pass filter for the following specification. Pass band ripple-2dB with edge frequency 2rad/sec, stop band attenuation can be more than -20dB with edge frequency 16rad/sec. (10 Marks)

- Design Butterworth low pass filter for following specification, pass band gain is -1dB at 2rad/sec, stop band attenuation can be more than 20dB at 8rad/sec. (10 Marks)
 - b. Find order of Butterworth low pass filter for following specification, pass band attenuation is 0.5dB at 1.2kHz, stop band attenuation can be more than 40dB at 2kHz.

Module-5

a. Mention the difference between FIR and IIT filter.

(06 Marks) (10 Marks)

b. For $H(z) = \frac{z(z+2)}{(z-3)(z+1)}$ realize cascade and parallel structure.

OR

a. For $H(z) = \frac{0.5 + 0.32z^{-1} - 0.6z^{-2}}{1 + 0.8z^{-1} - 1.2z^{-2}}$. Find the ladder and lattice coefficient with respect to IIR

(10 Marks)

b. For $H(z) = -6 - z^{-1} + z^{-2}$ realize in direct form and cascade with respect to FIR realization. (06 Marks)