

15MN71

Underground Mine Planning and Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the Government Role in mining and mine development. (08 Marks)
 - b. Explain plant silting and construction. (04 Marks)
 - c. Write a short note on impoundments and dams.

- OR

 2 a. Explain the environmental consequences on air, water and land pollution because of mining.

 (08 Marks)
 - b. Explain the process of Land Acquisition.

(08 Marks)

(04 Marks)

Module-2

3 a. Explain the various stages of planning a new mines.

- (08 Marks)
- b. What is a prefeasibility study? When and why do companies undertake that study? What information does it include? What action would you as a member of the study initiate in case of positive or negative outcomes of prefeasibility study? (08 Marks)

OR

- 4 a. Draw a neat sketch of pit top layouts with turn table and label its parts for underground coal mines.
 - b. Draw a neat sketch of pit bottom layout for skip winding for underground coalmines and indicate its salient features. (08 Marks)

Module-3

- a. Determine the inclined length of the level and number of levels that can be developed in a mining area, for the given conditions.
 - Daily coal output of the mine = 1500 tons
 - Annual rate of face advance = 400 m
 - Life of the mine = 35 years
 - Dip of the seam = 15°
 - Weight of 1 m³ of the coal seam = 1.3 t/m^3
 - Thickness of seam = 1.5 m
 - Coefficient of recovery of coal = 0.88

(10 Marks)

b. With a neat labeled sketch explain the division of mining property into levels and panels.

(06 Marks)

OR

6 The following are the data of a new underground coal mine:

Thickness of seam A = 1.0 m; seam B = 1.2 m and seam C = 1.4 m;

Weight of 1 m³ coal (in-situ) seams/equal for all seams) = 1.35 t/m^3 ;

Annual planned output of the mine = 11,00,000 t/year;

Daily planned output of mine = 4000 tons;

Coefficient of recovery (equal for seams) = 0.95;

Length of the productive face; Equal for all seams = 120 m;

Width of the web; equal for all seams = 1.3 m;

Number of cycles in the face per day (equal for all seams) = 2;

Cyclic coefficient (equal for all seams) = 0.8;

Coefficient accounting for the percentage of coal output from preductive faces (equal for all seams) = 0.95

and gradient of the seam = 10°.

Determine planned output from the faces, the number of the productive faces in the mining property, make arrangements of the faces within the mining area. (16 Marks)

Module-4

- 7 a. Describe the selection criteria for stoping methods in an underground metal mine. (08 Marks)
 - b. With a suitable example explain the process of production scheduling.
 - c. List some of the applications of computers in stope design.

(04 Marks) (04 Marks)

OR

8 a. What is work study and time study? With a suitable example explain the applications of work study for improving productivity when an SDL is used in an underground metal mine.

(08 Marks)

b. Explain cut-off grade with an example.

(04 Marks)

c. Explain the process of calculating economics of each stope.

(04 Marks)

Module-5

- 9 a. What are the sociological factors caused due to unplanned mine closure? Justify your answer with a case study. (08 Marks)
 - b. Mention the factors to be considered for effective mine closure.

(08 Marks)

OR

Write a short note on any two of the following Hydraulic mining, coal bed methane, underground coal gasification. (16 Marks)

* * * * *