

CBCS SCHEME

15MN42

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Thermodynamics and Fluid Mechanics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain open, closed and isolated system with example.

(06 Marks)

- b. Distinguish between the following terms:
 - i) Extensive and Intensive property
 - ii) Reversible and Irreversible process
 - iii) Path function and Point function
 - iv) Temperature and Thermal equilibrium
 - v) Microscopic and Macroscopic point of view.

(10 Marks)

OR

- 2 a. With a neat P-V diagram, derive an expression for work done in each case:
 - i) Isochoric Process
 - ii) Isobaric Process
 - iii) Isothermal Process
 - iv) Polytropic Process.

(10 Marks)

b. Define work and heat. Explain the sign convention for work and heat.

(06 Marks)

Module-2

3 a. State and explain the two statements of 2^{nd} law of thermodynamics.

(08 Marks)

b. A fluid system undergoes a non-flow frictionless process following the PV relation as P = 5/v + 1.5where P is in bar and v is in m³. During the process the volume changes from 0.15m^3 to 0.005m^3 and the system rejects 45KJ of heat.

Determine:

- i) Change in Internal energy
- ii) Change in Enthalpy.

(08 Marks)

OR

- a. Derive an expression for work done in a single stage compression without clearance volume.

 (08 Marks)
 - b. A single cylinder reciprocating compressor has a bore of 120mm and a stroke of 150mm, and is driven at a speed of 1200rpm. It is compressing CO₂ gas from a pressure of 120kPa and a temperature of 20°C to a temperature of 215°C. Assume polytropic compression with n = 1.3, no clearance and volumetric efficiency of 100%. Calculate:
 - i) Pressure ratio
 - ii) Indicated pressure
 - iii) Shaft power with mechanical efficiency of 80%
 - iv) Mass flow rate.

If a second stage of equal pressure ratio were added. Calculate e, the overall pressure ratio f, the bore of the second stage cylinder. If the same stroke was maintained. (08 Marks)

Module-3

5 a. Define fluid and classify fluids.

(06 Marks)

b. The dynamic viscosity of an oil, used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4m and rotates at 190rpm. Calculate the power lost in the bearing for a sleeve length of 90mm. The thickness of the oil film is 1.5mm. (10 Marks)

OR

6 a. With a neat sketch, explain the working of orifice meter.

(06 Marks)

b. An oil of specific gravity 0.7 is flowing through a pipe of diameter 300mm at the rate of 500 litre/s find the head lost due to friction and power required to maintain the flow for a length of 1000m. Take V = 0.29 strokes. (10 Marks)

Module-4

- 7 a. Determine the total pressure on a circular plate of diameter 1.5m which is placed vertically in water in such a way that the centre of plate is 3m below the free surface of water. Find the position of centre of pressure also.

 (08 Marks)
 - b. With neat sketch explain any two simple manometer and differential monometer. (08 Marks)

OR

- 8 a. Explain with sketch experimental method of determination of the meta-centric height of a floating body.

 (08 Marks)
 - b. Find the density of a metallic body which floats at the interface of mercury of specific gravity 13.6 and water such that 40% of its volume is sub-merged in mercury and 60% of water.

 (08 Marks)

Module-5

9 a. Derive an expression for Bernoulli's equation from first principle.

(08 Marks)

b. State Bernoulli's theorem. List the assumption and limitation of Bernoulli's equation.

(08 Marks)

OR

10 a. Explain HGL and TEL with sketch (Hydraulic Gradient line and Total Energy line).

(08 Marks)

b. A pipe through which water is flowing is having diameter 20cm and 10cm at the cross section 1 and 2 respectively. The velocity of water at section (1) is given as 4.0 m/s. Find the velocity head at section (1) and (2) and also rate of discharge. (08 Marks)

* * * * *