

15MN34

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Mechanics of Materials**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following: 1
 - i) Working stress and factor of safety
 - ii) Hooke's Law
 - iii) Draw stress strain relation for cast iron
 - iv) Draw stress strain relation for hard and soft rubber.

(08 Marks)

b. The following data refer to a mild steel specimen tested in a laboratory.

Dia of specimen

= 25mm

Extension under a load of 20kN = 0.04mm

Gauge length

= 200 mm

Load at yield point

= 150 kN

Maximum load

=225kN

Length of specimen after failure = 275mm

Neck diameter

= 18.25 mm

Determine:

- Young's modulus
- ii) Ultimate stress
- iii) Percentage elongation
- iv) Percentage reduction in area.

(08 Marks)

2 Derive an expression for stress and total elongation in an uniformly tapering circular bar.

(08 Marks)

A bar of diameter 20mm and length 100mm extends by 0.2mm. If E of the material of the rod is 2×10^5 N/mm², What load and type of load applied to the rod. If an extension of 20% greater is required for the same load applied above, how much the diameter of the bar need to be reduced.

Module-2

- Define the following: 3
 - Young's modulus
 - ii) Shear modulus
 - iii) Bulk modulus
 - iv) Poisson's ratio.

(08 Marks)

b. Determine the changes in length, width and thickness of a steel bar which is 4m long, 30mm wide and 20mm thick and is subjected to an axial pull of 30kN in the direction of length, $E = 2 \times 10^5 \text{N/mm}^2$ and Poisson's ratio = 0.3. Also determine the volumetric strain, change in volume and final volume of the given bar. (08 Marks)

OR

4 a. Define thin and thick cylinder.

(02 Marks)

- b. A steel penstock of 100cm diameter and 10mm thick is subjected to 10⁵mm head of water.
- c. Calculate the hoop stress and longitudinal stress at the bottom of the penstock. (06 Marks)
 A boiler shell is to be made of 20mm thick plates having a limiting tensile stress of 125N/mm². If the efficiencies of the longitudinal and circumferential joints are 80% and 30% respectively. Determine:
 - i) Maximum permissible diameter of the shell for an internal pressure of 2.5N/mm²
 - ii) Permissible intensity of internal pressure when the shell diameter is 1.6m. (08 Marks)

Module-3

5 a. Define shear Force diagram and Bending moment diagram.

(04 Marks)

b. Draw shear force diagram and bending moment diagram for the beam shown in Fig.Q5(b).

OR

6 a. List the different types of loads acting on a beam.

(04 Marks)

b. Draw shear force and bending moment diagram for the beam shown in Fig.Q6(b).

Module-4

7 a. Derive Bernoulli-Euler bending equation.

(08 Marks)

b. A cast iron bracket of I-section with equal flanges is as shown in Fig.Q7(b). The beam carries an UdL of 10 kN/m on a span of 10m length. Determine the position of neutral axis, MI about the neutral axis and the maximum stress distribution.

