A OF TEOMNOLOGIC	CBCS SCHEME
USN	

17EE53

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Power Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain any five types of power electronics converter system and also specify the form of input and output waveform. (10 Marks)
 - D. With block diagram, explain the peripheral effects of power electronic equipments. (06 Marks)
 - Discuss the major industrial applications of power electronic converter circuits. (04 Marks)

OF

2 a. Briefly explain the different types of power diodes.

(08 Marks)

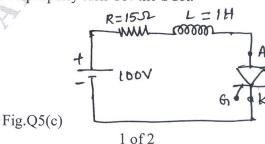
- b. With circuit diagram and waveform explain uncontrolled single phase full wave rectifier with RL load. (08 Marks)
- c. Compare the advantages and disadvantages of bridge rectifier and rectifier with center tapped transformer. (04 Marks)

Module-2

- 3 a. With neat circuit diagram, explain steady state and switching characteristics of power MOSFET. (12 Marks)
 - b. A BJT is specified to have β in the range 8 to 40 load resistance $R_C=11\Omega$, the DC supply voltage is $V_{CC}=200 \text{volts}$ and the input voltage to the base circuit is $V_{BB}=10 \text{ volts}$. If $V_{CE(sat)}=1 \text{ volt}$ and $V_{BE(sat)}=1.5 \text{ volt}$, find :
 - i) The value of R_B that result in saturation with an ODF of 5.
 - ii) The forced β value and
 - iii) Power loss in the transistor.

(08 Marks)

(08 Marks)


OR

- a. With necessary waveform explain the switching characteristics of IGBT. (06 Marks)
 - b. Discuss the importance of providing isolation of gate/base drive from power circuits and explain the two methods. (06 Marks)
 - c. Sketch the structure of n-channel enhancement type MOSFET and explain its working principle.

 (08 Marks)

Module-3

- 5 a. Explain the V-I characteristics of SCR also define: i) Holding current ii) Latching current.
 (06 Marks)
 - b. Explain different methods of turning ON of thyristor.
 - c. For the circuit shown in Fig.Q5(c). If the latching current is 4mA calculate the minimum width of gate pulse required properly turn ON the SCR. (06 Marks)

OR

- 6 a. Derive an expression for the anode current of thyristor with the help of two transistor analogy. (10 Marks)
 - b. With circuit diagrams and waveforms, explain the methods of protection of SCR. (10 Marks)

Module-4

- 7 a. With the help of circuit diagram and wave forms, explain the working of single phase full converter with R-L load. (10 Marks)
 - b. A single phase full wave AC voltage controller has an input voltage of 230V and load resistance of 10Ω . The firing angle is 45°, calculate:
 - i) RMS output voltage
 - ii) The output power
 - iii) The input power factor.

(10 Marks)

OR

- 8 a. With circuit diagram and waveforms explain 1\$\phi\$ dual converter. (10 Marks)
 - b. With circuit diagram and waveform, explain the operation of 3φ full converters. (10 Marks)

Module-5

- 9 a. Explain the working of step-up chopper. Draw the relevant waveforms, derive an expression for average output voltage. (08 Marks)
 - b. Write a note on performance parameters of chopper.

(04 Marks)

- c. A stepdown chopper with resistive load has a resistive load of 10Ω and the input voltage is $V_S = 220V$. When the converter switch remains ON its voltage drop is 2V and the chopping frequency is f = 1KHz, if the duty cycle is 50% determine:
 - i) Average output voltage
 - ii) RMS output voltage
 - iii) Chopper efficiency
 - iv) Effective input resistance.

(08 Marks)

OR

- 10 a. With circuit diagram, explain the operation of a single phase-full bridge inverter suppling a resistive load. (10 Marks)
 - b. Explain any two modulation technique available for voltage control of a single phase inverter. (10 Marks)

* * * * *