

15EE53

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Power Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Mention the types of Power Electronic Circuits. Explain different power electronic circuits.

 With neat circuit diagram, input and output waveform. (08 Marks)
 - b. What is Power Electronics? Mention the major applications of Power Electronics. (04 Marks)
 - c. With circuit diagram, voltage waveforms, explain control characteristics of
 - i) Thyristor
- ii) GTO
- iii) MOSFET
- iv) BJT

(04 Marks)

OR

2 a. With neat circuit diagram and waveforms, explain single phase full wave rectifiers.

(07 Marks)

- b. With the help of power converter block diagram, explain peripheral effects. (04 Marks)
- c. With the help of waveforms, explain the reverse recovery characteristics of a power diode.
 (05 Marks)

Module-2

- 3 a. With neat circuit diagram and switching waveforms, explain switching characteristics of BJT. (08 Marks)
 - b. Explain the switching characteristics of MOSFET with switching circuit model and waveforms. (08 Marks)

OR

- 4 a. What is the necessity of Isolating gate and base drive circuits? With circuit diagram, explain Opto Couplers. (08 Marks)
 - b. Explain the switching limits of BJT.

(04 Marks)

- c. The bipolar transistor in fig. Q4(c), shown below is specified to have β in the range of 8 to 40. The load resistance is $h_c = 11\Omega$. The dc supply voltage is $V_{CC} = 200V$ and the input and $V_{BE(sat)} = 1.5V$, $V_B = 10V$. Find
 - i) The value of RB that results in saturation with an ODF of 5.
 - ii) The forced β and
 - iii) The power loss P_T in the transistor.

(04 Marks)

Module-3

- 5 a. With circuit diagram and waveforms, explain RC half wave triggering circuit. (04 Marks)
 - b. Derive an expression for the anode current of thyristor with two transistor nodel. (07 Marks)
 - c. Design the values of di/dt inductor and RC snubber components for an SCR working in a 230V system. Given di/dt rating is $90A/\mu s$ and dv/dt rating is $200V/\mu s$. Effective series resistance is 1.5Ω and damping factor is 0.6. (05 Marks)

OR

- 6 a. With neat waveforms, explain Thyristor turn on and turn off characteristics. (06 Marks)
 - b. With neat circuit diagrams, explain dv/dt protection of SCR. (05 Marks)
 - c. With neat diagram, explain V I characteristics of SCR.

(05 Marks)

Module-4

7 a. With circuit diagram and waveforms, explain the operation of $1 - \phi$ dual converter.

(08 Marks)

b. A single phase full wave AC voltage controller has a resistive load of $R=10\Omega$ and the input voltage is $V_S=120$ V(rms), 60 Hz. The delay angle of Thyristor T_1 and T_2 are equal; $\alpha_1=\alpha_2=\pi/2$. Determine i) The rms o/p voltage V_o ii) The input power factor PF iii) The average thyristor current I_A .

OR

- 8 a. With circuit diagram and waveform, explain the operation of a Three phase dual converter.
 - b. With circuit diagram and waveforms, explain 1 φ full wave A.C voltage controllers with resistive load.
 (08 Marks)

Module-5

- 9 a. With the help of circuit and quadrant diagram, classify the different types of choppers. Explain four quadrant chopper with circuit diagram. (08 Marks)
 - b. A chopper is feeding and RL load as shown in fig. Q9(b) with $V_S = 220V$, $R = 5\Omega$, L = 7.5 mh, f = 1 KHz, K = 0.5 and E = 0V. Calculate i) The minimum instantaneous load current I_1 ii) The peak instantaneous load current I_2 iii) The maximum peak to peal load ripple current iv) The average value of load current I_a v) The rms lad control I_o . (08 Marks)

OR

- 10 a. With circuit diagram and waveforms, explain single phase full bridge inverter. (08 Marks)
 - b. With circuit diagram and waveforms, explain three phase bridge inverter. (08 Marks)

* * * * *