Time: 3 hrs.

## Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Field Theory

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

## PART - A

- 1 a. State and explain Coulomb's law in complete form. (05 Marks)
  - b. It is required to hold four equal point charges each in equilibrium at the corners of a square.

    Determine the point charge which must be located at the centre of the square. (07 Marks)
  - c. Evaluate both sides of divergence theorem for the volume enclosed by r = 2m, z = 0 and z = 10m. Given  $D = \frac{10r^3}{4}$  ar  $c/m^2$ . (08 Marks)
- 2 a. With usual notations prove that  $E = -\nabla V$ . (06 Marks)
  - b. Determine work-done in carrying a  $-2\mu$ C charge from  $P_1$  (2, 1, -1) to  $P_2$ (8, 2, -1) in a field  $E = ya_x + xa_y \text{ v/m}$  along the path i)  $x = 2y^2$  ii) joining  $P_1$  to  $P_2$ .
  - c. The potential field  $V = \frac{60 \sin \theta}{r^2}$  volts. Determine : i) electric flux density ii) volume charge density iii) electric potential at  $(r = 3m, \theta = 60^\circ, \phi = 25^\circ)$ . (06 Marks)
- 3 a. Derive Poisson's and Laplace equation. (06 Marks)
  - b. A potential field  $V = x^2yz + Ay^3z$  volts is required to satisfy Laplace equation. What should be value of 'A'? With this value of A determine: i) Potential ii) Electric field at (2, 1, -1). (05 Marks)
  - c. Derive an expression for capacitance of a spherical capacitor. (09 Marks)
- 4 a. Use Ampere Law to determine magnetic field intensity H at P(2, 3, 5) due to an infinitely long conductor placed at x = 0, y = 0 and carrying a current of 50A along positive  $a_z$  direction.
  - b. Evaluate the closed line integral of 'H' from  $P_1(5, 4, 1)$  to  $P_2(5, 6, 1)$  to  $P_3(0, 6, 1)$  to  $P_4(0, 4, 1)$  to  $P_1(5, 4, 1)$  using straight line segments,  $H = 0.1y^3a_x + 0.4xa_y$ . Also determine: i) Quotient of closed line integral of 'H' to area enclosed by the path
  - ii)  $\nabla \times H$  at the centre of path. (09 Marks)
  - c. Compare scalar magnetic potential with sector magnetic potential. (05 Marks)

## PART - B

- 5 a. Derive an expression for force between two infinitely long straight parallel conduction separated by distance of 'd' m between them. Assume that they are placed in air. (06 Marks)
  - b. A current element  $10^{-4}a_z$  Am is located at (2, 0, 0) and another current element  $10^{-6}$   $(a_x 2a_y + 3a_z)$ Am is located at (-2, 0, 0) both in free space. Find force exerted on second element by the first element. (06 Marks)
  - c. Determine inductance of a solenoid with 200 turns wound highly on a cylindrical core of length 60cm and diameter 6cm. derive the expression used. (08 Marks)

- 6 a. Starting from Faraday's law of electromagnetic induction derive the equation  $\nabla \times E = \frac{-\partial B}{\partial t}$ .

  (06 Marks)
  - List Maxwell's equations for both steady and time varying fields in point form and integral form. Mention laws that each equation demonstrates. (08 Marks)
  - c. Determine frequency at which conduction current density 'J' and displacement density are equal. Given conductivity  $\sigma = 2 \times 10^{-4} \text{s/m}$  and  $\epsilon_r = 81$ . (06 Marks)
- 7 a. For electromagnetic wave propagating in free space prove that  $\frac{|\overline{E}|}{|\overline{H}|} = \eta$ . (08 Marks)
  - b. A 50 GHz plane wave travelling in the medium has an amplitude  $E_0 = 20 \text{V/m}$ . Determine: i) Phase velocity ii) Wavelength iii) Impedance. Given  $\varepsilon_r = 2$  and  $\mu_r = 5$ . (06 Marks)
  - c. State and prove pointing theorem. (06 Marks)
- 8 a. Define the terms : i) Reflection co-efficient and ii) Transmission coefficient.

Also bring out the relation between.

(08 Marks)

b. Write a short note on SWR.

(05 Marks)

c. In free space ( $z \le 0$ ), a plane wave with  $H = 10\cos{(10^8 t - \beta z)}a_x$  mA/m is incident normally on a lossless medium ( $\epsilon = 2\epsilon_0$ ,  $\mu = 8\mu_0$ ) in region  $z \ge 0$ . Determine reflected wave  $H_r$ ,  $E_r$  and transmitted wave  $H_r$ ,  $E_r$ .