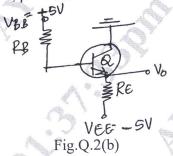
Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog Electronic Circuits

Time: 3 hrs.

Max. Marks: 80


Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

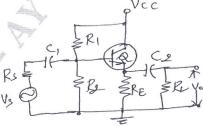
- 1 a. Explain the dc analysis of emitter stabilized bias circuit. State its advantages and disadvantages. (06 Marks)
 - b. Obtain an expression for S_{VBE} OR S' for voltage divider bias circuit. Also express relation between S_{ICO} (S) and S_{VBE} (S'). (10 Marks)

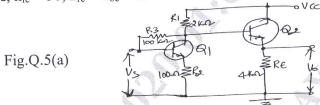
OR

- 2 a. For voltage divider bias circuit $R_1 = 68K\Omega$, $R_2 = 6.8K\Omega$, $R_C = 3.3K\Omega$, $R_E = 1K\Omega$, $V_{CC} = 12V$ and $\beta = 100$. Determine the location of Q-point. Draw the circuit diagram.
 - b. For the circuit shown in Fig.Q.2(b), determine V_{CE} , VE and IE. Given that $R_B=220K\Omega$, $R_E=2.2K\Omega$, $V_{BB}=5V$, $V_{EE}=-5V$, $\beta=100$. (06 Marks)

Module-2

- a. State the conditions to operate transistor in saturation region, just out of saturation region and for active region. (03 Marks)
 - b. For the common collector circuit shown in Fig.Q.3(b), $R_1 = 47 K \Omega$, $R_2 = 4.7 K \Omega$, $R_E = 3.3 K \Omega$, $R_L = 10 K \Omega$, $R_S = 1 K \Omega$, hic = 1.2 K Ω , h_{fc} = -101, hrc = 1 and hoc = 25 μ A/V. Determine A_I, Z_i, Av and Avs. How do you justify your results? Use exact h-parameter model. (10 Marks)

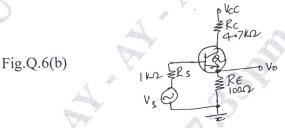



Fig.Q.3(b)

c. State and explain the conditions to apply approximate h-parameter model for small signal equivalent circuit. (03 Marks)

- 4 a. Consider a hybrid II model for CE stage. Explain the variation of current gain vs frequency. Obtain an expression for cut off frequency f_{β} . (10 Marks)
 - b. The short circuit CE current gain of transistor is 50 at a frequency of 5MHZ, if $f_{\beta} = 300 \text{kHz}$, determine f_{T} , hfe and /Ai/ when f = 10 MHZ. (06 Marks)

Module-3


5 a. For the 2-stage cascade amplifier shown in Fig.Q.5(a), calculate A_I , A_V , Z_i , Z_o . Given $h_{ie}=1.1K\Omega$, $h_{fe}=50$, $h_{re}=h_{oe}=0$. (10 Marks)

b. What is a CASCODE amplifier? Draw the circuit of CASCODE amplifier. State its advantage. (06 Marks)

OR

- 6 a. Obtain an expression for transfer gain and stability of gain in negative feedback amplifier.
 (08 Marks)
 - b. For the voltage series feedback amplifier shown in Fig.Q.6(b), calculate D, A_{vf} , Z_{if} and Z'_{of} . (08 Marks)

Module-4

- 7 a. Derive an expression for second harmonic distortion and power output due to distortion in a power amplifier. Use 3-point method. (10 Marks)
 - b. A complementary push pull amplifier has capacitive couple load, $R_L = 8\Omega$, $V_{CC} = \pm 12V$, find $P_{ac\ max}$, P_D of each transistor and conversion efficiency. (06 Marks)

OR

- 8 a. Obtain an expression for frequency of oscillations in Hartley oscillator. (10 Marks)
 - b. A crystal has $\alpha = 0.1$ H, C = 0.01pF, R = 10K Ω , $C_M = 1$ pF. Find fs and Q-factor. Also state Barkhausen criteria for sustained oscillations. (06 Marks)

Module-5

- 9 a. List the important features of FET and state its drawback also. (06 Marks)
 - b. For the voltage divider bias circuit of FET, $R_D=1.2 K\Omega$, $R_S=2 K\Omega$, $R_1=20 K\Omega$, $R_2=10 K\Omega$, $V_{DD}=12 V$, $I_{DSS}=12 mA$, $V_P=-4 V$, determine I_D , V_{GS} , V_G , V_{DS} and V_S . Draw the circuit diagram. (10 Marks)

OR

- 10 a. Consider JFET with self bias having unbypassed R_S . Obtain expression for Z_i Z_o and A_v . Draw the circuit diagram and small signal circuit also. (10 Marks)
 - b. Explain the differences between depletion type and enhancement type MOSFETS. (06 Marks)