

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020

Power Electronics

Time: 3 hrs.

NOALORE

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain the classification of power semiconductor switching devices, on the basis of control characteristics. (08 Marks)
 - b. Explain different types of power converter systems with circuit and waveforms. (08 Marks)
 - . Draw symbol and characteristics of the following devices: i) SITH ii) SIT (04 Marks)
- 2 a. Using transient model of BJT, explain switching characteristics of power transistor.

(10 Marks)

- b. The collective clamping circuit in Fig.Q2(b) has $V_{CC}=100$ V, $R_{C}=1.5$ Ω , $V_{d_1}=2.1$ V, $V_{d_2}=0.9$ V, $V_{BE}=0.7$ V, $V_{B}=15$ V and $R_{B}=2.5$ Ω , $\beta=16$. Calculate:
 - i) Collector emitter clamping voltage V_{CE}
 - ii) Collector event without clamping

Fig.Q2(b)

(06 Marks)

c. Compare the features of BJT and MOSFET.

(04 Marks)

- 3 a. Using two transistor analogy, derive an expression for anode event of a SCR. (08 Marks)
 - . Briefly explain dynamic turn-ON and turn-off characteristics of SCR. (08 Marks)
 - c. If the latching event of SCR shown in Fig.Q3(c) is 4 mA, find the minimum width of gate pulse required to turn-ON SCR.

(04 Marks)

- 4 a. The converter circuit shown in Fig.Q4(a) has resistive load of R and delay angle is $\alpha = \frac{\pi}{2}$, determine:
 - (i) Rectifier efficiency
 - (ii) Form factor FF
 - (iii) Ripple factor RF
 - (iv) Transformer utilization factor TUF
 - (v) PIV of thyristor.

Fig.Q4(a)

(10 Marks)

b. Explain with neat circuit and waveform, single phase full converter with R-load. Derive equation for V_{DC} and V_{rms} . (10 Marks)

PART - B

- 5 a. Explain the principles of self commutation circuit with necessary circuit and waveform.

 Derive equation for capacitor voltage and current. (10 Marks)
 - b. The commutation circuit in Fig.Q5(b) has $C = 30~\mu F$ and inductance $L = 4~\mu H$. The initial capacitor voltage is $V_D = 200~V$. Determine the circuit turn-off time t_{off} if load current I_m is (i) 250 A (ii) 50 A.

(10 Marks)

- a. Explain the basic principles of phase angle controller with neat circuit and waveform. Derive equations for RMS and average output voltage. (10 Marks)
 - b. Explain with circuit and waveform, single phase bidirectional controller with resistive loads.

 Derive equation for RMS output. (10 Marks)
- 7 a. Explain with circuit and waveform, principles of step down chopper with R-load. Derive equation for output voltage. (10 Marks)
 - b. Mention the classification of choppers. Briefly explain each type. (10 Marks)
- 8 a. Explain with circuit and waveform, single phase bridge inverter. (10 Marks)
 - b. Explain with circuit and waveform, single phase current source inverter. (10 Marks)

