

15EC72

Seventh Semester B.E. Degree Examination, Dec.2019/Jan.2020 Digital Image Processing

Time: 3 hrs.

BANGALOR

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. With the help of a block diagram, explain the fundamental steps in digital image processing.

 (10 Marks)
 - b. Explain the concept of sampling and quantization using a single example.

(06 Marks)

OR

- 2 a. Explain the importance of brightness adaption and discrimination in image processing.
 - b. Explain 'false contouring' and check board pattern in image processing.

(06 Marks) (06 Marks)

c. Explain city block distance with an example.

(04 Marks)

Module-2

- 3 a. Explain the power law transformation and piece –wise linear contrast stretching with a neat graphical illustration. (10 Marks)
 - b. Explain with a block diagram, the basic steps for image filtering in frequency domain.

(06 Marks)

OF

4 a. Perform histogram, equalization of the 5×5 image.

Gray level	0	1	2	3	4	5	6	7
Number of pixels	0	0	0	6	14	5	0	0

Table Q4(a)

whose data is shown in table Q4(a).

(08 Marks)

- b. Explain the smoothing of images in frequency domain using:
 - i) ideal low pass filter ii) butter worth low pass filter.

(08 Marks)

Module-3

- 5 a. Explain the basic model of image restoration process. Explain any four important noise probability density functions. (10 Marks)
 - b. Explain minimum mean square error (Wiener) filtering in image processing.

(06 Marks)

OR

6 a. Explain adaptive mean filter and list its advantages.

(08 Marks)

b. With necessary mathematical equations, explain estimate the degradation function by modeling. (08 Marks)

Module-4

- 7 a. Develop a procedure for converting:
 - i) RGB to HSI model
 - ii) HSI to RGB model.

(08 Marks)

b. Obtain the Harr transform matrix for N = 4.

(08 Marks)

OR

8 a. Write a note on pseudocolor image processing. Explain intensity slicing as applied to pseudo color image processing.
b. Explain Erosion and Dilation in image processing.
(08 Marks)
(08 Marks)

Module-5

9

a. Explain Marr-Wildreth edge detector in image processing. (08 Marks)
 b. Explain MPP algorithm in image representation (MPP – Minimum Permimeter Polygon). (08 Marks)

OR

10 a. Explain basic global thresholding with iterative algorithm.
b. Explain simple descriptors and Fourier descriptors.
(08 Marks)

2 of 2