

CBCS SCHEME

17EC54

Fifth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Information Theory and Coding**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 Suppose you are planning a trip to Miami, Florida from Minneapolis in the winter time. You are receiving the following information from Miami Weather bureau:

(i) Mild and Sunny day

- (ii) Cold day
- (iii) Possible snow flurries

Explain the amount of information content in each statement.

(06 Marks)

(06 Marks)

- The output of an information source consists of 128 symbols, 16 of which occurs with probability of $\frac{1}{32}$ and the remaining 112 occurs with probability of $\frac{1}{224}$. The source emits 1000 symbols/sec. Assuming that the symbols are chosen independently. Find the Average Information Rate of this source.
- The state diagram of a stationary Mark off Source is shown in Fig.Q1(c):
 - Find the entropy of each state
 - (ii) Find the entropy of the source
 - (iii) Find G_1 and G_2 and verify that $G_1 \ge G_2 \ge H$.

Assume
$$P(1) = P(2) = P(3) = \frac{1}{3}$$

(08 Marks)

- What is self information? Mentions its various measuring units and also mentions the reasons for choosing logarithmic function. (06 Marks)
 - A binary source is emitting an independent sequence of 0's 1's with probabilities of P and 1 – P respectively. Plot the entropy of this source versus probability. (06 Marks)
 - For the first order Markov statistical model as shown in Fig.Q2(c).

(i) Find the probability of each state

(ii) Find H(s) and H(s $^{-2}$)

Fig.Q2(c)

where A, B, and C are the states.

(08 Marks)

Module-2

3 a. Identify whether the codes shown in Table.Q3(a) are instantaneous. Justify your answer.

Symbols	Code A	Code B	Code C			
S_1	00	1	0			
S_2	01	01	100			
S_3	10	001	101 🦪			
S_4	11	00	111 •			
			2007			

Table.O3(a)

(06 Marks)

- b. Consider a Discrete Memory Source (DMS) with $S = \{X, Y, Z\}$ with $P = \{0.6, 0.2, 0.2\}$. Find the code word for the message "YXZXY" using Arithmetic code. (06 Marks)
- c. An information source produces a sequence of independent symbols having the following probabilities. More composite symbol as slow as possible.

Symbol	A	В	C	D	Е	F	G
Probabilities	1	1	1	1	1	1	1
	3	27	3	9	9	27	27

Construct Binary Huffman encoding and find its efficiency.

(08 Marks)

OR

4 a. Write the Shannon's Encoding Algorithms.

- (06 Marks)
- b. Consider the following source with probabilities:

$$S = \{A, B, C, D, E, F\}$$

$$P = \{0.4, 0.2, 0.2, 0.1, 0.08, 0.02\}$$

Find the code words using Shannon-Fano algorithm and also find its efficiency. (06 Marks)

c. Consider the following discrete memoryless source:

$$S = \{S_0, S_1, S_2, S_3, S_4\}$$

$$P = \{0.55, 0.15, 0.15, 0.1, 0.05\}$$

Compute Huffman code by placing composite symbol as high as possible. Also find average code word length and variance of the code word.

(08 Marks)

Module-3

- 5 a. What is Joint Probability Matrix? How it is obtained from Channel Matrix and also mention properties of JPM. (06 Marks)
 - b. For the communication channel shown in Fig.Q5(b), determine Mutual Information and Information Rate if $r_s = 1000$ symbols/sec. Assume $P(X_1) = 0.6$ and $P(X_2) = 0.4$.

Fig.Q5(b)

(06 Marks)

c. Discuss the Binary Erasure Channel and also prove that the capacity a Binary Erasure Channel is $C = \overline{P} \cdot r_s$ bits/sec. (08 Marks)

OR

6 a. What is Mutual Information? Mention its properties.

(06 Marks)

b. The noise characteristics of a channel shown in Fig.Q6(b). Find the capacity of a channel if $r_s = 2000$ symbols/sec using Muroga's method.

Fig.Q6(b)

(06 Marks)

c. State and prove the Shannon-Hartley Law.

(08 Marks)

Module-4

- What are the advantages and disadvantages of Error Control Coding? Discuss the methods of controlling Errors. (06 Marks)
 - b. The parity check bits of a (7, 4) Hamming code are generated by

$$C_5 = d_1 + d_3 + d_4$$

$$C_6 = d_1 + d_2 + d_3$$

$$C_7 = d_2 + d_3 + d_4$$

where d₁, d₂, d₃ and d₄ are the message bits.

- Find G and H for this code.
- (ii) Prove that $GH^T = 0$.

(06 Marks)

c. Design a syndrome calculating circuit for a (7, 4) cyclic code with $g(X) = 1 + X + X^3$ and also calculate the syndrome of the received vector R = 1110101. (08 Marks)

8 For a systematic (6, 3) linear block code, the Parity Matrix P is given by

$$[P] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- (i) Find all possible code words.
- (ii) Find error detecting and correcting capability.

(06 Marks)

- b. A (7, 4) cyclic code has the generator polynomial $g(X) = 1 + X + X^3$. Find the code vector both in systematic and non-systematic form for the message bits (1101).
- Draw the Encoder circuit of a cyclic code using (n K) bit shift Registers and explain it.

(08 Marks)

- Consider (3, 1, 2) Convolution Encoder with $g^{(1)} = 110$, $g^{(2)} = 101$ and $g^{(3)} = 111$. 9
 - Draw the encoder diagram.
 - Find the code word for the message sequence (11101) using generator Matrix and Transform domain approach. (16 Marks)
 - Discuss the BCH codes.

(04 Marks)

- 10 Consider the convolution encoder shown in Fig.Q10(a).
 - Write the impulse response and its polynomial.
 - (ii) Find the output corresponding to input message (10111) using time and transform domain approach.

Fig.Q10(a)

(16 Marks)

Write a note on Golay codes.

(04 Marks)