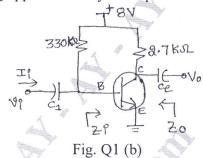


GBGS SCHEME

15EC32

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog Electronics


Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Draw the circuit diagram of common Emitter fixed bias configuration. Derive the expression for Z_i Z_o, A_v using r_e model. (08 Marks)
 - b. For the network shown in Fig. Q1 (b), determine Z_i Z_o , A_v and A_i . Given $h_{ie} = 1.175$ K Ω , $h_{fe} = 120$, $h_{oe} = 20$ μ A/v using approximate hybrid equivalent model. (08 Marks)

OR

- 2 a. Draw 're' and 'h'-parameter models for a transistor in common Emitter configuration. Also give relation between 're' and 'h'-parameter. (05 Marks)
 - b. For the circuit shown below, calculate r_e , Z_i Z_o and A_v , while consider $r_0 = \infty$. (08 Marks)

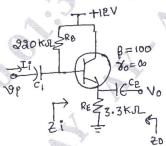


Fig. Q2 (b)

c. What are the advantages of h-parameters?

(03 Marks)

Module-2

3 a. Explain the small signal model of the FET.

(04 Marks)

b. Derive the expression for Z_i Z_o and A_v for FET voltage divider bias circuit.

(08 Marks)

c. Compare JFET and MOSFET.

(04 Marks)

OR

a. Explain the n-channel enhancement type MOSFETs, with their characteristics curves.

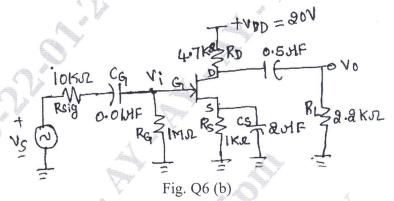
(08 Marks)

Derive the expression for Z_i Z_o and A_v for FET self biased configuration (with R_s bypassed).
(08 Marks)

Module-3

5 a. Prove that

Input capacitance is $C_{Mi} = (1 - A_v)C_f$ and


Output capacitance is $C_{MO} = \left(1 - \frac{1}{A_v}\right)C_f$ using miller effect.

(08 Marks)

b. Describe the factors that affect the low frequency response of a BJT-CE amplifier. (08 Marks)

OR

- 6 a. Explain high frequency response of FET amplifier and derive expression for cut off frequencies, defined by input and output circuits (f_{Hi} and f_{Ho}). (08 Marks)
 - b. Determine the lower cut off frequency for the network shown in Fig. Q6 (b), using following parameters $g_m = 2$ ms, $r_d = \infty \Omega$, $I_{DSS} = 8$ mA, $V_P = -4V$, $V_{DD} = 20$ V. (08 Marks)

Module-4

- 7 a. With the help of a neat circuit diagram, explain the working of Hartley oscillator. (08 Marks)
 - b. The following data for Colpitts oscillator are as follows: $C_1 = 1$ nF, $C_2 = 99$ nF, L = 1.5 mH and $h_{fe} = 110$. Calculate frequency of oscillation for the same. (04 Marks)
 - c. Explain the important advantages of a negative feedback amplifier. (04 Marks)

OR

- 8 a. Mention the types of feedback connections. Draw their block diagrams indicating input and output signal. (08 Marks)
 - b. Obtain expression for Z_{if} , Z_{of} for a voltage series feedback.

(08 Marks)

Module-5

- 9 a. Explain the operation of a class B push-pull amplifier and also show that its efficiency 78.50%. (08 Marks)
 - b. With a neat circuit diagram, explain the operation of a transformer coupled class A power amplifier. (08 Marks)

OR

10 a. For a harmonic distortion reading of $D_2 = 0.1$, $D_3 = 0.02$ and $D_4 = 0.01$, with $I_1 = 4$ A and $R_C = 8$ Ω , calculate the total harmonic distortion, fundamental power and total power.

(04 Marks)

- b. What are the classification of power amplifiers, based on the location of Q point? Discuss them briefly. (08 Marks)
- c. With the help of neat block diagram, explain the working of shunt voltage regulator.

(04 Marks)