Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog Electronic Circuits

Max. Marks:100

ote: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

a. Explain the fallowing with respect to a semi conductor diode.
 i)Transition capacitance ii) Reverse necessary time iii) Piece-wise linear model. (06 Marks)

b. For the circuit shown in Fig.Q1(b) Find and plot the waveforms of 'V₀' for the input indicated. (06 Marks)

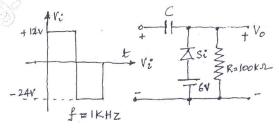


Fig.Q1(b)

c. For the circuit shown in Fig.Q1(c):

i) Explain the operation of the circuit

ii) Calculate DC o/p voltage and current

iii) Find average and peak diode currents.

iv) Calculate the required PIV rating of each diode.

Assume ideal diodes and take $R_1 = R_2 = R = 10k\Omega$.

(08 Marks)

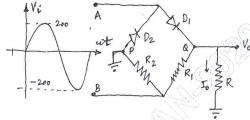


Fig.Q1(c)

2 a. Derive an expression for stability factor $S(I_{CO})$ and $S(V_{BE})$ for collector feedback bias.

(09 Marks)

b. Design a voltage divider bias circuit using silicon transistor with $V_{CC}=18V$, $I_C=2.3 mA$, $V_{CE}=8.2V$, $R_C=3.3 k\Omega$, $\beta=100$ and $S(I_{CO}) \leq 5$. (06 Marks)

For the transistor switch in shown Fig.Q2(c), $V_{BE} = 0.7V$, $(V_{CE})_{sat} = 0.3V$, $I_{CE_0} = 5\mu A$ and $h_{fe} = 125$. i) Calculate $(I_C)_{sat}$ $(I_B)_{max}$, On and Off resistance $(R)_{sat}$ and $(R)_{cut\ off}$

ii) Sketch output voltage wave form.

(05 Marks)

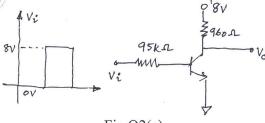
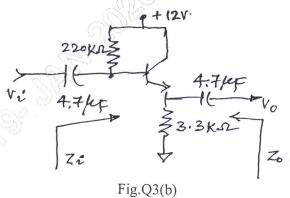
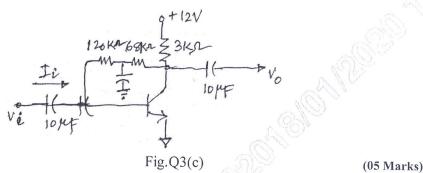
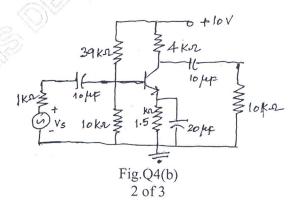




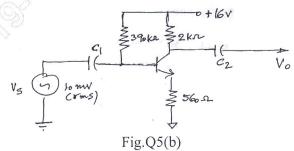
Fig.Q2(c) 1 of 3

- a. Derive an expression for Z_i, Z₀, A_V and A_I for common—base configuration using r_e model.
 Also discuss some applications of CB configuration.
 (10 Marks)
 - b. For the emitter follower circuit shown in Fig.Q3(b), calculate r_e , Z_i , Z_0 A_V and A_I. Take $\beta = 100$ and $r_0 = \infty$. (05 Marks)



c. For the circuit shown in Fig.Q3(c) below calculate r_e , Z_i , Z_0 A_V and A_I . Take $\beta=140$ and $r_0=30k\Omega$.

- 4 a. Prove that miller effect of input capacitance $C_{Mi} = (1 A_V)C_f$ and output capacitance $C_{M0} = \left[1 \frac{1}{A_V}\right]C_f$ and also discuss applications of Millers theorem. (10 Marks)
 - b. For the circuit shown in Fig.Q4(b) the following, using transistor with $\beta=100$ and $r_0=\infty\Omega$. i) r_e
 - ii) input resistance Ri
 - iii) mid band voltage gain $A_V = V_0/V_I$ and $A_{VS} = V_0/V_S$
 - iv) lower cut off frequency due to CS
 - v) lower cut off frequency due to C_C and C_E
 - vi) overall lower cut off frequency.

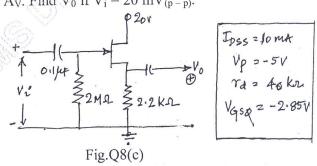

(10 Marks)

PART - B

- Derive expressions for Z_i and A_i for Darlington emitter follower circuit. (08 Marks)
 - b. For the current series feedback amplifier shown in Fig.Q5(b) calculate the following:
 - i) Densentisivity factor
 - ii) Transfer gain with feedback
 - iii) Voltage gain with and without feedback
 - iv) Input resistance with and without feedback
 - v) Output resistance with and without feedback
 - vi) Output current with and without feedback
 - vii) Output voltage with and without feedback.

(12 Marks)

- Explain the operation of a class-B push pull amplifier and derive an expression for conversion efficiency.
 - Draw the circuit of transformer coupled class A power amplifier, on performing DC and AC analysis. Derive an expression for AC power delivered to load and maximum AC output (12 Marks) power.
- Explain the working of Wein bridge oscillator.


- (06 Marks)
- b. With a neat circuit diagram, explain the operation of Hartley oscillator.
- (06 Marks)

- c. Discuss the merits, demerits and application of crystal oscillators.
- (04 Marks)
- d. A crystal has following parameters : L = 0.334H C = 0.065 pf $C_M = 1$ pf R = 5.5k Ω .
 - i) Calculate series and parallel frequency.
 - ii) By what percentage does parallel resonant frequency exceeds the series resonant frequency
 - iii) Find the 'Q' of the crystal.

(04 Marks)

Compare JFET and MOSFET.

- (04 Marks)
- Draw the circuit of JFET common gate configuration. Derive an expression for Z_i, Z₀ and Av using small signal model. Also summarize the characteristic of common gate (10 Marks) configuration.
- For the JFET-common drain configuration shown in Fig.Q8(c) and for given data. Calculate Z_i , Z_0 and A_V . Find V_0 if $V_i = 20 \text{ mV}_{(p-p)}$.

(06 Marks)