

ixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Compiler Design**

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

D	AT	T	A
	AI	1	A

- Explain with a neat diagram, the phases of a compiler. (10 Marks) 1
 - Construct the transition diagram to recognize the tokens given below: b.
 - (ii) Relational operator (iii) Unsigned number. (06 Marks) 4 (i) Identifier
 - Explain the concept of input buffering in the lexical analyser. (04 Marks) c.
- What is left recursion? Eliminate left recursion from the following grammar a. $E \rightarrow E + T \mid T, T \rightarrow T * F \mid F, F \rightarrow (E) \mid id$. (06 Marks)
 - Given the grammar $S \rightarrow a \mid (L), L \rightarrow L, S \mid S$

3 hrs.

- Do the necessary changes to make it suitable for LL(1) Parser.
- Check whether the resultant grammar is LL(1) or not. (08 Marks) (ii)
- Briefly explain the problem associated with top-down parsers. (06 Marks) Ç.
- Obtain the LR(0) items for the following grammar $S \rightarrow L = R \mid R$; $L \rightarrow *R \mid id$; $R \rightarrow L$. 3 a.
 - b. Write the SLR parsing algorithm. Find SLR item and table for the following grammar. $A \rightarrow (A) \mid a$. Verify for the string ((a)). (12 Marks)
- Write an algorithm for constructing the canonical LR(1) parsing table. Construct canonical LR(1) parsing table for $S \rightarrow CC$, $C \rightarrow cC \mid d$. (14 Marks)
 - Construct the LALR parsing table for the grammar shown in 4(a) using LR(1) items. b. (06 Marks)

PART - B

- Explain the concept of syntax-directed definition with example. (06 Marks)
 - Assuming suitable syntax directed definition, construct a syntax tree for the expression (10 Marks)
 - Write the annotated parse tree for 3*5+4n. (04 Marks)
- Draw the DAG for the arithmetic expression, a + a * (b - c) + (b - c) * d.
 - Show the steps for constructing the DAG.

(10 Marks)

- b. What are three address codes? Explain different ways of representing three address codes with example.
- What is an activation record? Explain the purpose of each item in the activation record with (10 Marks)
 - Distinguish between static scope and dynamic scope? Briefly explain access to non-local b. (10 Marks) names in static scope.
- Explain the code generation algorithm and generate code for the following expression, (10 Marks) X = (a - b) + (a + c).
 - What are the basic blocks and how do you partition a three address code in the basic block. (05 Marks)
 - Discuss the issue in the design of code generator. (05 Marks)