

h Semester B.E. Degree Examination, Dec.2019/Jan.2020 Formal Languages and Automata Theory

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

Differentiate between DFA and NFA. Construct DFA to accept the following language. $L = \{\omega : |\omega| \mod 3 \ge |\omega| \text{ and } 2\} \text{ where } \sum = \{a, b\}.$

b. Write a procedure to convert NFA to equivalent DFA convert the following NFA into equivalent DFA.

	4	
$\rightarrow q_0$	$\{q_{0}\}$	$\{q_0, q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
*q3	ф	Φ

(10 Marks)

Define Regular expression. Write regular expression to accept the following languages $L=\{a^nb^m:n\geq 1, m\geq 1, nm\geq 3\}$ (08 Marks)

Show that every language defined by a regular expression is also defined by a finite (06 Marks)

Discuss any three applications for Regular expressions.

(06 Marks)

State pumping lemma for regular languages. Show that the following language is not 3 regular. $L = \{0^n : n \text{ is prime number}\}\$ (06 Marks)

If L and M are regular languages, show that $L \cap M$ is also regular.

(06 Marks)

Minimize the following DFA using Table filling method.

(08 Marks)

		U	1
_	→A	В	A
	В	A	C
	C	D	В
4	* D	D	A
	Ε	D	F
	F	G	E
	G	F	G
	H	G	D

Define Context Free Grammar. Construct CFG for the following language.

 $L = \{0^1 \ 0^j \ 0^k \ | \ j > i + k\}$

(08 Marks)

b. Write leftmost, derivation and construct parse tree for the string 'aabbbb' using the grammar $S \rightarrow AB \in$

 $A \rightarrow aB$

 $B \rightarrow Sb$

(06 Marks)

Define ambiguous grammar. Show that the following language is ambiguous.

 $S \rightarrow SS/(S)/()$

(06 Marks)

PART - B

5 a. Define push Down Automata. Construct NPDA for accepting the following language.

 $L = \{\omega \omega^{R} : \omega \in \{a, b\}^{*}\}\$

Show all ID's to process the string 'baab'

(14 Marks)

b. Convert the grammar to equivalent PDA.

 $S \rightarrow 0AA$

 $A \rightarrow 0S \mid 1S \mid 0$

(06 Marks)

6 a. Convert the grammar into GNF.

 $S \rightarrow AA \mid 0$

 $A \rightarrow SS \mid 1$

(08 Marks)

b. Eliminate all ∈ production from the grammar

 $S \rightarrow ABC$

 $A \rightarrow BC \mid a$

 $B \to bAC \mid \in$

 $C \rightarrow cAB \in$

(06 Marks)

c. If L is a CEL and R is a regular language then show that $L \cap R$ is a CEL.

(06 Marks)

7 a. Define Turning machine. Design Turing machine that accept the following language

 $L = \{a^n b^n c^n : n \ge 1\}$

(10 Marks)

- b. Write a note on:
 - i) Multiple Turing Machine
 - ii) Nondeterministic Turing Machine.

(10 Marks)

- 8 a. Define Recursively Enumerable language. Prove that Diagnoalization in not recursively enumerable. (08 Marks)
 - b. Write a note on:
 - i) Recursive language
 - ii) Post's correspondence problem.

(12 Marks)