GBCS SCHEME

			enth oxena, anth, atth	, 100	William and the selection in the last intentions		1100		0	1
USN						4.7	1=(Librara 18	CS	34
						有 】	125	20.000	X	

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Computer Organization

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the basic operational concepts of the computer with a neat diagram. (06 Marks)
 - b. What is performance measurement? Explain the overall SPEC rating for the computer in a program suite. (08 Marks)
 - c. Explain the following:
 - (i) Byte addressability
- (ii) Big-endian assignment
- (iii) Little-endian assignment.

(06 Marks)

OR

2 a. Show how the below expression will be executed in one address, two address and three address processors in an accumulator organization.

 $X = A \times B + C \times D$

(08 Marks)

- b. What is the effective address of the source operand in each of the following instructions, when the Register R1, and R2 of computer contain the decimal value 1200 and 4600?
 - (i) Load 20(R1), R5 (iv) Add – (R2), R5
- (ii) Move #3000, R5
- (iii) Store R5, 30(R1, R2)
- (v) Subtract (R1)+, R5

(08 Marks)

c. Interpret the Subroutine Stack Frame with example.

(04 Marks)

Module-2

- 3 a. Illustrate a program that reads one line from the keyboard, stores it in memory buffer, and echoes it back to the display in an I/O interfaces. (10 Marks)
 - b. What is an interrupt? What are Interrupt service routines and what are vectored interrupts? Explain with example. (10 Marks)

OR

- 4 a. Demonstrate the DMA and its implementation and show how the data is transferred between memory and I/O devices using DMA controller. (08 Marks)
 - b. With a neat diagram, explain the general 8-bit parallel interface circuit.

(06 Marks)

c. Explain PCI bus data transfer in a computer system.

(06 Marks)

Module-3

5 a. Explain the organization of $1k \times 1$ memory chip.

(08 Marks)

b. With a neat figure explain the direct mapped cache in mapping functions.

(08 Marks)

c. What is memory interleaving? Explain.

(04 Marks)

OR

- 6 a. With a neat diagram briefly explain the internal organization of 2M × 8 dynamic memory chip. (08 Marks)
 - b. Illustrate cache mapping techniques.

(06 Marks)

c. Calculate the average access time experienced by a processor, if a cache hit rate is 0.88, miss penalty is 0.015 milliseconds and cache access time is 10 microseconds. (06 Marks)

Module-4 Perform the addition and subtraction of signed numbers: (i) + 4 and - 6(ii) -5 and -2

(iii) +7 and -3

(iv) + 2 and + 3(08 Marks)

b. Explain 4 bit carry - look ahead adder with a neat diagram.

(06 Marks)

Perform bit pair recoding for (+13) and (-6).

(06 Marks)

Perform Booth's algorithm for signed numbers (-13) and (+11)8 (10 Marks) Show and perform non restoring division for 3 and 8. (10 Marks)

Module-5

Illustrate the sequence of operations required to execute the following instructions Add (R3), R1

Explain the three bus organization of a data path with a neat diagram.

(10 Marks) (10 Marks)

Compare and contrast the following: 10 a.

(i) Hard - wired control

(ii) Microprogrammed control.

(10 Marks)

b. What is pipeline? Explain the 4 stages pipeline with its instruction execution steps and hardware organization. (10 Marks)