

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Finite Element Analysis

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Explain plane stress and plane strain problems in FEA.

(10 Marks)

b. Using Rayleigh Ritz method find the stress and displacement at midpoint of a bar shown in Fig.Q1(b). Assume E = 70GPa; A = 100mm² and take displacement model to be 2nd order.

Fig.Q1(b)

2 a. Using natural co-ordinate system derive shape function of 1D bar element. (10 Marks)

b. With usual notations obtain relationship between Cartesian co-ordinates and natural co-ordinates. (04 Marks)

c. Explain convergence requirements to be satisfied in FEA.

(06 Marks)

For the 2 bar truss shown in Fig.Q3, determine the nodal displacements, stresses in each element and reaction at support. Take E = 200GPa, Area of element = 200 mm² each.

(20 Marks)

Fig.Q3

4 a. With usual notations obtain shape functions for quadrilateral element in natural coordinates.
(12 Marks)

b. Explain different types of higher order elements used in FEA.

(08 Marks)

PART - B

5 a. Obtain shape function of four noded terrahedral elements.

(10 Marks)

b. Explain Lagrange elements and with pascal triangle.

(10 Marks)

6 a. Explain ISOparametric, subparametric and super parametric elements.

8

b. Explain different modules of processing done in FEM analysis.

(12 Marks) (08 Marks)

- 7 a. Derive shape function for axisymmetric triangular element by cylindrical co-ordinate system. (10 Marks)
 - b. Obtain [B] matrix for axisymmetric triangular element as shown in Fig.Q7(b) below.

(10 Marks)

8 Find the natural frequencies of stepped bar shown in Fig.Q8 considering Young's modulus as E, and density as ρ. (20 Marks)

* * * * *