

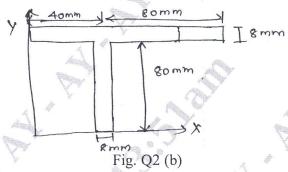
15AE64

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Aircraft Structures – II

Time: 3 hrs.

BANG

Max. Marks: 80


Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Derive the equation for direct stress distribution due to unsymmetrical bending and position of the neutral axis. (10 Marks)
 - b. Derive the relationship between load intensity, shear force and bending moment. (06 Marks)

OR

- 2 a. Derive the Breadth-Batho theory. (06 Marks)
 - b. Find the maximum normal stress due to bending for the section shown in Fig.Q2 (b) $M_x = 1500 \text{ N.m}, M_y = 0$ (10 Marks)

Module-2

3 a. Explain the principle of structural idealization.

(08 Marks)

b. Derive the equation for shear flow in open section beams.

(08 Marks)

OR

4 a. Describe the effect of idealization on the analysis of open and closed section beams.

(04 Marks)

- b. Justify the effects of booms in the idealized structure whether the shear distribution will get affected or not, because of its presence (booms). (04 Marks)
- c. Derive the equation for shear flow in closed section beams.

(08 Marks)

Module-3

- 5 a. Explain Buckling of isotropic flake plate in compression. (08 Marks)
 - b. Explain Needham and Gerard method for determining crippling stress.

(08 Marks)

77

6 a. Explain the concept of effective width.

(06 Marks)

b. Explain bolted or riveted joints.

(04 Marks)

c. Explain accuracy of fitting analysis.

(06 Marks)

Module-4

7 a. Explain three-boom shell in detail.

(06 Marks)

b. The thin walled single cell beam shown in Fig. Q7 (b) has been idealized into a combination of direct stress-carrying booms and shear stress only carrying walls.

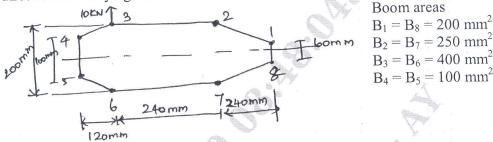
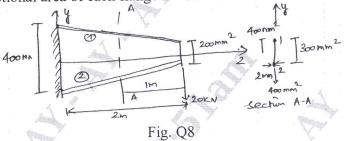



Fig. Q7 (b)

If the section supports a vertical shear load of 10 kN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around the section. (10 Marks)

OR

Determine the shear flow distribution in the web of the tapered beam shown in Fig. Q8 at a section midway along its length. The web of the beam has a thickness of 2 mm and is fully effective in resisting direct stress. The beam tapers symmetrically about its horizontal central axis and a cross sectional area of each flange is 400 mm². (16 Marks)

Module-5

9 a. Explain the principles of stiffeners construction with example.

(08 Marks)

b. Why cut-outs in fuselages is required? Explain the construction of fuselage frames.

(08 Marks)

OR

The fuselage of a light passenger carrying aircraft has the circular cross section shown in Fig. Q10. The cross sectional area of each stringer is 100 mm² and the vertical distance given in Fig. Q10 are to the mid-line of the section wall at the corresponding stringer position. If the fuselage is subjected to a bending moment of 200 kNm applied in the vertical plane of symmetry, at this section, calculate the direct stress distribution. (16 Marks)

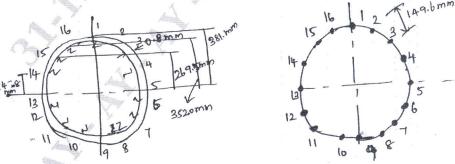


Fig. Q10

* * * * *