
International Journal of Science and Research (IJSR)
ISSN (Online):

Volume 3 Issue 4, April 2014
www.ijsr.net

Cloud-Based Enhanced Mobile Video Streaming
Rajshekhar Targar1, Ziaur Rahman2

1, 2 Acharya Institute of Technology, Bangalore 107, India

Abstract: The recent cloud computing technology, with its rich resources to compensate for the limitations of mobile devices and
connections, can potentially provide an ideal platform to support the desired mobile services. In this paper, Cloud-based Enhanced
Mobile Video Streaming (CloudEMVS) is proposed. This system effectively utilizes both PaaS (Platform-as-a- Service) and IaaS
(Infrastructure-as-a-Service) cloud services to offer the living-room experience of video watching to a group of disparate mobile users
who can interact socially while sharing the video. A surrogate, performs efficient stream transcoding that matches the current
connectivity quality of the mobile user is introduced.

Keywords: Cloud Computing, IaaS, PaaS, Surrogate, Video Streaming.

1. Introduction

The rapidly increasing power of personal mobile devices
(smartphones, tablets, etc.) is providing much richer
contents and social interactions to users on the move.
Tough challenges arise on how to effectively exploit cloud
resources to facilitate mobile services, especially those with
stringent interaction delay requirements. The design of a
novel enhanced mobile video streaming, which can
effectively utilize the cloud computing paradigm to offer a
living- room experience of video watching to disparate
mobile users with spontaneous social interactions. In
CloudEMVS, mobile users can import a live or on-demand
video (VoD) to watch from any video streaming site,
invite their friends to watch the video concurrently, and
chat with their friends while enjoying the video.
CloudEMVS is designed to seamlessly utilize agile
resource support and rich functionalities offered by both an
IaaS (Infrastructure-as-a-Service) cloud and a PaaS
(Platform-as-a-Service) cloud. The remainder of this paper is
organized as follows. In Sec. II, Proposed system is
compared with the existing system. In Sec. III architecture
of CloudEMVS

2. Related Work

A number of mobile TV systems have sprung up in recent
years, driven by both hardware and software advances in
mobile devices. Some early systems [1] bring the “living-
room” experience to small screens on the move. But they
focus more on barrier clearance in order to realize the
convergence of the television network and the mobile
network, than exploring the demand of “social”
interactions among mobile users. There is another trend in
which efforts are dedicated to extending social elements to
television systems [2]. In past, efforts are made [2] to add
rich social interactions to TV but their design is limited to
traditional broadcast program channels. Existing systems
[3] are designed in a way; it has a mobile social TV
system, which is customized for DVB-H networks and
Symbian devices as opposed to a wider audience.
Compared to these prior work and systems, a design for a
generic, portable mobile social TV framework, featuring
co viewing experiences among friends over geographical
separations through mobile devices is targeted. This
framework is open to all Internet-based video programs,

either live or on-demand, and supports a wide range of
devices with HTML5 compatible browsers installed,
without any other mandatory component on the devices. For
any application targeted at mobile devices, reducing power
consumption is perennially one of the major concerns and
challenges. Most of the existing systems exploit
collaborations between the mobile OS and the mobile
applications to balance the energy conservation and
application performance. They investigate mobile
multimedia streaming, similar to most of the other work, by
adjusting the CPU power for energy saving; however,
according to the recent measurement work, displays the
wireless network card (including the cellular module) and
not the CPU consume more than half of the overall power
consumption in smart phones nowadays.

Cloud computing provides offloading mobile devices’
computation workload to a nearby resource- rich
infrastructure (i.e., Cloudlets) by dynamic VM synthesis. An
elastic mobile application model by offloading part of the
applications (weblets) to an IaaS cloud was introduced.
Recently, attentions have been drawn to enabling media
applications using the cloud, for both media storage [4] and
processing.

Finally, there is a lack of a richly-featured cloud- based
mobile social TV system in real life. The only system
coming close to proposed system is Live Stream on the iOS
platform. This iOS-locked application only supports live
video channels, and all its social functions are bound to
Facebook open APIs. Conversely, the prototype
implemented is browser-based and platform independent; it
supports both live channels, VoD channels and even
personal channels hosted by any user, with wider usage
ranges and flexible extensibility. The framework proposed
can be readily applied to other cloud-assisted mobile
media applications as well.

Paper ID: 020131591 835

International Journal of Science and Research (IJSR)
ISSN (Online):

Volume 3 Issue 4, April 2014
www.ijsr.net

Figure 1: Architecture of Cloud EMVS

3. CloudEMVS: Architecture and Design

As a novel Mobile-Social TV system using cloud
computing (CloudMEMVS), provides two major
functionalities to participating mobile users: (1) Universal
streaming: A user can stream a live or on- demand video
from any video sources he chooses, such as a TV program
provider or an Internet video streaming site, with tailored
encoding formats and rates for the device each time. (2)
Co-viewing with social exchanges: A user can invite
multiple friends to watch the same video, and exchange
text messages while watching. The group of friends
watching the same video is referred to as a session. The
mobile user who initiates a session is the host of the
session. The architecture of CloudEMVS and the detailed
designs of the different modules are presented in the
following.

3.1 Key Modules

Fig. 1 gives an overview of the architecture of
CloudEMVS. A surrogate (i.e., a virtual machine (VM)
instance), or a VM surrogate equivalently, is created for
each online mobile user in an IaaS cloud infrastructure.
The surrogate acts as a proxy between the mobile device
and the video sources, providing transcoding services as
well as segmenting the streaming traffic for burst
transmission to the user. Besides, they are also responsible
for handling frequently exchanged social messages among
their corresponding users in a timely and efficient manner,
shielding mobile devices from unnecessary traffic and
enabling battery efficient, spontaneous social interactions.
The surrogates exchange social messages via a back-end
PaaS cloud, which adds scalability a n d robustness t o the
system. There is a gateway server in CloudEMVS that
keeps track of participating users and their VM
surrogates, which can be implemented by a standalone
server or VMs in the IaaS cloud. The design of
CloudEMVS can be divided into the following major
functional modules.

3.1.1 Transcoder
It resides in each surrogate, and is responsible for
dynamically deciding how to encode the video stream
from the video source in the appropriate format,
dimension, and bit rate. Before delivery to the user, the
video stream is further encapsulated into a proper
transport stream. In this implementation, each video is

exported as MPEG-2 transport streams, which is the de
facto standard nowadays to deliver digital video and
audio streams over lossy medium.

3.1.2 Reshaper
The reshaper in each surrogate receives the encoded
transport stream from the transcoder, chops it into
segments, and then sends each segment in a burst to the
mobile device upon its request (i.e., a burst transmission
mechanism), to achieve the best power efficiency of the
device. The burst size, i.e., the amount of data in each
burst, is carefully decided according to the 3G
technologies implemented by the corresponding carrier.

3.1.3 Social Cloud
It is built on top of any general PaaS cloud services with
BigTable-like data store to yield better economies of scale
without being locked down to any specific proprietary
platforms. Despite its implementation on Google App
Engine (GAE) as a proof of concept, our prototype can be
readily ported to other platforms. It stores all the social
data in the system, including the online statuses of all users,
records of the existing sessions, and messages (invitations
and chat histories) in each session. The social data are
categorized into different kinds and split into different
entities (in analogy to tables and rows in traditional
relational database, respectively). The social cloud is queried
from time to time by the VM surrogates.

3.1.4 Messenger
It is the client side of the social cloud, residing in each
surrogate in the IaaS cloud. The Messenger periodically
queries the social cloud for the social data on behalf of the
mobile user and pre-processes the data into a light-weighted
format (plain text files), at a much lower frequency. The
plain text files (in XML formats) are asynchronously
delivered from the surrogate to the user in a t r a f f i c -
friendly manner, i.e., l i t t l e t ra f f ic is incurred. In the
reverse direction, the messenger disseminates this user’s
messages (invitations and chat messages) to other users via
the data store of the social cloud.

3.1.5 Syncer
The syncer on a surrogate guarantees that view-ing
progress of this user is within a time window of other users
in the same session (if the user chooses to synchronize with
others). To achieve this, the syncer periodically retrieves
the current playback progress of the session host and
instructs its mobile user to adjust its playback position. In
this way, friends can enjoy the “sitting together” viewing
experience. Different from the design of communication
among messagers, syncers on different VM surrogates
communicate directly with each other as only limited
amounts of traffic are involved.

3.1.6 Mobile Client
The mobile client is not required to install any specific client
software in order to use CloudEMVS, as long as it has an
HTML5 compatible browser (e.g., Mobile Safari,
Chrome, etc.) and supports the HTTP Live Streaming
protocol. Both are widely supported on most state-of-the-art
smartphones.

Paper ID: 020131591 836

International Journal of Science and Research (IJSR)
ISSN (Online):

Volume 3 Issue 4, April 2014
www.ijsr.net

3.1.7 Gateway
The gateway provides authentication services for users to
log in to the CloudEMVS system, and stores users’
credentials in a permanent table of a MySQL database it
has installed. It also stores information of the pool of
currently available VMs in the IaaS cloud in another in-
memory table. After a user successfully logs in to the
system, a VM surrogate will be assigned from the pool
to the user. The in-memory table is used to guarantee
small query latencies, since the VM pool is updated
frequently as the gateway reserves and destroys VM
instances according to the current workload. In addition,
the gateway also stores each user’s friend list in a plain
text file (in XML formats), which is immediately uploaded
to the surrogate after it is assigned to the user. The
key designs in CloudEMVS are described as
following.

3.2 Loosely Coupled Interfaces

Similar in spirit to web services, the interfaces between
different modules in CloudEMVS, i.e., mobile users, VM
surrogates, and the social cloud, are based on HTTP, a
universal standard for all Internet- connected devices or
platforms. Loose coupling between users and the
infrastructure, almost any mobile device is ready to gain
access to the CloudEMVS services, as long as it is
installed with an HTTP browser. The VM surrogates
provisioned in the IaaS cloud cooperate with the social
cloud implemented on a PaaS cloud service via HTTP as
well, with no knowledge of the inner components and
underlying technologies of each other, which contributes
significantly to the portability and easy maintenance of
the system.

For social message exchanges among friends,
CloudEMVS employs asynchronous communication. All
the exchanged messages are routed via the surrogates to
the social cloud, which efficiently organizes and stores
the large volumes of data in a BigTable-like data store.
The VM surrogates query the social cloud frequently
and processes the retrieved data into XML files, for later
retrieval by users in an asynchronous fashion. Such a
design effectively separates the mobile users from the
social cloud to significantly simplify the architecture,
while the extra delay introduced at the VM surrogates is
ignorable.

3 . 3 Pipelined Video Processing

Both live streaming of real-time contents and on demand
streaming of stored contents are supported in CloudEMVS.
Video processing in each surrogate is designed to work on
the fly, i.e., the transcoder conducts real-time encoding
from the video source, the encoded video is fed
immediately into the reshaper for segmentation and
transmission, and a mobile user can start viewing the
video as soon as the first segment is received. To support
dynamic bit rate switch, the transcoder launches multiple
threads to transcode the video into multiple bit rates once
the connection speed between the surrogate and the mobile
user changes. The IaaS cloud where the surrogates are
deployed represents an ideal platform for implementing

such computation intensive jobs.

3.4 Burst Transmissions

First, 3G power states, different from Wi-Fi which is more
similar to the LANed Internet access, 3G cellular services
suffer from the limited radio resources, and therefore each
user equipment (UE) needs to be regulated by a Radio
Resource Control (RRC) state machine. Different 3G
carriers may customize and deploy complex states in their
respective cellular networks. Different states indicate
different levels of allocated radio resources, and hence
different levels of energy consumptions.

Second, Transmission mechanism, In CloudEMVS,
maximum conservation of the battery capacity of the
mobile device, and design a burst transmission mechanism
for streaming between the surrogate and the device is aimed.
Using the HTTP live streaming protocol, the mobile device
sends out requests for the next segment of the video stream
from time to time. The surrogate divides the video into
segments, and sends each segment in a burst transmission
to the mobile device, upon such a request. When the mobile
device is receiving a segment, it operates in the high-power
state when there is nothing to receive, it transfers to the
low- power state via the intermediate state and remains
there until the next burst (segment) arrives.

Third, to decide the burst size, i.e., the size of the segment
transmitted in one burst, it is necessary to take into
consideration characteristics of mobile streaming and
energy consumption during state transitions.

3.5 VM Surrogates

All the VM surrogates are provisioned from Amazon EC2
web services and tracked by the gateway. To implement all
the video processing related tasks using ANSI C, to
guarantee the performance is proposed.

Figure 2: Streaming architecture in each customized
VM image

In particular, FFmpeg together with libav-codec as the
groundsill library to develop t h e transcoding,
segmentation and reshaping modules on the VM
surrogates is needed and also a Tomcat web server
(version 6.5) to serve as a Servlet container and a file
server on each surrogate is needed. Once a VM surrogate
receives a video subscription request from the user, it
downloads the video from the source URL, and processes
the video stream by transcoding and segmentation, based

Paper ID: 020131591 837

International Journal of Science and Research (IJSR)
ISSN (Online):

Volume 3 Issue 4, April 2014
www.ijsr.net

on the collected device configurations by the portal. Fig. 2
shows the streaming architecture in our customized VM
image.

3.6 Data Models in the Social Cloud

GAE (Google Application Engine) is mainly used as the
back-end data store to keep the transient states and data of
CloudEMVS, including users’ online presence status,
social messages (invitation and chat messages) in all the
sessions. With Jetty as the underlying Servlet container,
most Java-based applications can be easily migrated to
GAE, under limited usage constraints, where no platform-
specific APIs are enforced for the deployment. GAE
provides both its Java Persistence adapter and a set of
proprietary low-level APIs to map the relational data.

Once a user logs in to the system and enters the URL
of a video to watch, a session ID is generated for the
new session (corresponding to vie wing of this video), by
combining the user’s “username” in the system with the
time stamp when the session is created. The gateway
delivers an HTTP request to a Servlet listener running on
GAE, to notify it that an entry for the newly joined user
should be added, with the user’s “username” as the key
and other information (URL of the subscribed video, the
session ID, etc.) as the value.

Whenever a user decides to join a session hosted by his
friend upon invitation, his VM surrogate switches to
download the video of the session, and at the same time
sends an HTTP request to the social cloud, for updating
the session ID in this user’s entry to the new one. If the
user wishes to synchronize his playback progress with
that of the session host, his VM surrogate synchronizes
with the session host to maintain the playback “current
time” value (HTML5 property).

The social cloud maintains a “Logs” entry for each
existing session in CloudEMVS, with the session ID as the
primary key and an array list as the value, which
corresponds to individual messages in this session. When
a user in a session posts a comment, this message is first
sent to his VM surrogate, which further injects the
message into the social cloud via another Servlet listener.
The message is stored as a “Message” entry in the social
cloud, with the message content as the value, and an auto-
generated integer as the key. Entries “Logs” and
“Message” are annotated by a @OneToMany relationship,
to facilitate the data management. VM surrogates of users
in the same session send periodical HTTP query requests
to the social cloud for the latest comments from others. The
default interval for retrieval of new comments is 10
seconds. The retrieved messages are stored and updated on
the surrogates, which process them into well-formed XML
formats for efficient parsing at the user devices. The user
devices retrieve the XML files from the surrogates at a
lower frequency (with default interval 1 minute), in order
to minimize the power consumption and the traffic. Fig. 3
presents social message exchanges among a mobile user,
his VM surrogate, and the GAE. A large number of entries
in the social cloud become outdated very soon, since users
may switch from one session to another, quit the system,

and so on. We launch a cron job behind the scene every 10
minutes to clear those outdated entries is launched. For
example, for sessions of which everybody has left, their
“Logs” entries and all the associated “Message” entries are
deleted in a single transaction.

Figure 3: Social message exchanges via Google App
Engine

4. Work flow of CloudEMVS

Figure 4: Flow Diagram of CloudEMVS

Figure 4 shows the flow diagram of CloudEMVS. The
user enters the credentials and after authentication the user
requests for the video either on demand or live. The VM
surrogate processes the video and then sends it as the
response to the user.

5. Sequence Diagram

Figure 5: Sequence Diagram of CloudEMVS

Paper ID: 020131591 838

International Journal of Science and Research (IJSR)
ISSN (Online):

Volume 3 Issue 4, April 2014
www.ijsr.net

Figure 5 shows the sequence diagram of CloudEMVS. The
user logs in through the gateway. After which the user
connects to the cloud where the user will be able to request
the video either VOD or live. When the user sends the
request for the video, the cloud encodes chops into segments,
converts to plain format and finally sends the response to the
user.

6. Conclusion and Future Work

In view of what might become a trend for mobile TV i.e.,
mobile social TV based on agile resources supports and rich
functionalities of cloud computing services a generic and
portal mobile social TV framework is introduced,
CloudEMVS, that makes use of both an IaaS and a PaaS
cloud. The framework provides efficient transcoding services
for most platforms under various networks conditions and
supports for co-viewing experiences through timely chat
exchanges among the viewing users. By employing one
surrogate VM for each mobile user, ultimate scalability of the
system is achieved. Through an in-depth investigation of the
power states in commercial 3G cellular networks, an energy-
efficient burst transmission mechanism that can effectively
increase the battery lifetime of user is also proposed.

Much more, however, can be done to enhance CloudEMVS
to have product-level performance. In the current prototype,
sharing of encoded streams (on the same format/bit rate)
among surrogates of different users is not enabled. In future
work, such sharing can be enabled and carried out in a peer-
to-peer fashion, e.g., the surrogate of a newly joined user
may fetch the transcoded streams directly from other
surrogates, if they are encoded in the format/bit rate that the
new user wants.

References

[1] J. Santos, D. Gomes, S. Sargento, R. L. Aguitar, N.
Baker, M. Zatar, and A. Ikram, “Multicast/broadcast
network convergence in next Generation mobile
networks, “Computer Netw, vol 52, pp. 228-247, January
2008.

[2] T. Coppens, L. Trappeniners, and M. Godon,
“AmigoTV: towards a social TV experience,” in Proc of
EuroITV,2004.

[3] R. Schatz, S. Wagner, S. Egger, and N. Jordan,
“Mobile TV becomes Social- Integrating Content with
Communications,” in Proc. Of ITI, 2007.

[4] W. Zhu, C. Luo, J. Wang, and S . L i , “Multimedia cloud
computing,” IEEE Signal Processing Magazine, vol 28,
pp. 59-69, 2011.

[5] R. Pereira and K. Breitman, “A cloud b a s e d architecture
for improving video compression time efficiency. The
split & merge approach.

[6] Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Bur-rows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A Distributed Storage System for
Structured Data, in Proc of OSDI, 2006.

Author Profile

Rajshekhar Targar is currently pursuing his Master
degree in Computer Science from Acharya Institute of
Technology Bangalore, India, 2012-2014. He received
B.E. degree in Computer Science from Gogte Institute
of Technology in 2010. His research interest areas

include cloud computing, mobile video streaming.

Paper ID: 020131591 839

