

16/17MDE/MMD41

Fourth Semester M.Tech. Degree Examination, June/July 2019 Tribology and Bearing Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain with sketches, the regimes of lubrication.

(08 Marks)

- b. Explain the effect of temperature and pressure on viscosity of lubricating oils.
- c. State and explain Newton's law of viscous flow.

(04 Marks) (04 Marks)

OF

- 2 a. Derive Hagen Poiseuilli law. State the assumptions made in the derivation. (08 Marks)
 - b. An oil supply line 3m long and having an internal diameter 0.8mm and delivers 2 lt of oil/mm. The oil has viscosity of 0.065 pa.sec. Determine the pressure drop in the supply line.

 (08 Marks)

Module-2

With usual notations derive Reynold's equation in 2-D and also write the assumptions made in the derivation of Reynold's equation.

(16 Marks)

OR

4 a. A rectangular plate slider bearing with fixed shoe has following details:

Length of the bearing = 80mm

Width of the bearing = 65mm

Velocities = 2.5 m/sec

Load = 15400N

Viscosity of the oil is 68 cp

Minimum film thickness = 0.013mm

Determine:

- i) Inclination of surface in radians
- ii) Coefficient of friction under given operating condition

iii) Power loss in the bearing. Neglect the effect of end flow.

(08 Marks)

b. A pivoted shoe slider bearing has square shape and has the following specifications load is 15kN, velocity of moving surface is 5m/sec. Viscosity is 0.032 pa.sec. permissible min film thickness is 0.01875mm. Assume that the dimensionless variable ie m = 1. Determine: i) Required dimensions of the shoe ii) Coefficient of friction iii) Power loss. Taking into account of end leakage performance. (08 Marks)

Module-3

- 5 a. Derive an expression for load carrying capacity and rate of flow of oil through a hydrostatic step bearing.

 (08 Marks)
 - b. A hydrostatic step bearing has the following data, diameter of shaft = 150mm, diameter of pocket is 100mm, vertical thrust on bearing is 60kN speed of shaft is 1500rpm, μ = 30cp, oil film thickness is 0.125mm. Determine rate of flow of oil, power loss due to friction and coefficient of friction. (08 Marks)

16/17MDE/MMD41

OR

a. Explain Elasto-hydrodynamic lubrication, with examples. Discuss in brief
i) Different forms of EHL contacts ii) Different regimes in EHL contacts.
b. Write a note on rectangular pad bearings.
(06 Marks)

Module-4

- 7 a. Explain the following with respect to antifriction bearings:
 - i) Static and dynamic load bearing capacity
 - ii) Equivalent and cubic mean load
 - iii) Bearing mountings. (12 Marks)
 Discuss about the working principle of porous bearing. (04 Marks)

OF

- 8 a. Discuss the advantages and disadvantages of i) Gas lubricated bearing ii) Anti friction bearing. (08 Marks)
 - b. Derive the governing equation of porous bearing. (08 Marks)

Module-5

9 a. Explain with a neat sketch, the working of an active magnetic bearing. (08 Marks)
b. Explain the applications of magnetic bearing. (08 Marks)

OR

- Write short notes on:
 a. Analogy between electric and magnetic field. (08 Marks)
 - b. Explain advantages and disadvantages of magnetic bearings. (08 Marks)