CBCS SCHEME

USN

16/17MDE23

Second Semester M.Tech. Degree Examination, June/July 2019 Dynamics and Mechanism Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Write down the differences between:
 - i) Analysis and synthesis
 - ii) Plane, spherical and spatial mechanism.

(08 Marks) (08 Marks)

b. Find the degree of freedom of following mechanism shown in Fig.Q.1(b).

OR

2 a. State and explain Grashoff's law and equivalent mechanisms.

(06 Marks)

- b. Write short note on the following:
 - i) Auxiliary point method using rotated velocity vector.
 - ii) Goodman's indirect method.

(10 Marks)

Module-2

- 3 a. What is a constraint? State the difference between Holonomic and non-holonomic constraints. (06 Marks)
 - b. State and explain the following:
 - i) Principle of virtual work
 - ii) D'Alembert's principle.

(10 Marks)

OR

- 4 a. Derive the Lagrange's equations of motion from D'Alembert's principles. (08 Marks)
 - b. Using the Hamilton principle find the equation of motion for the system shown in Fig.Q.4(b). (08 Marks)

Fig.Q.4(b) 1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- 5 a. Explain any four of the following:
 - i) Type synthesis
 - ii) Function generation
 - iii) Path generation
 - iv) Location of pole
 - v) Relative pole.

(08 Marks)

b. Write the equations to obtain optimum transmission angle with Crank-rocker mechanisms.

OF

6 a. Explain with a neat sketch of two position synthesis of Slider-Crank mechanism. (08 Marks)

b. The rocker of Crank-Rocker mechanism is to have length of 55mm and Swing's through a total angle of 50° with a time ratio of 1.3. Determine the suitable set of dimensions.

(08 Marks)

Module-4

Synthesize a function generator to generate a function $y = \log_{10}(x)$ in the interval $1 \le x \le 10$. The input crank is to rotate from 30° to 120° while the output lever moves from 240° to 330°. Use three accuracy points with Chebychev spacing and Freudenstein's equation. Plot the mechanism for frame length of 50mm. (16 Marks)

OR

8 Synthesize a four-bar mechanism to give the following values for the angular velocities and accelerations:

 $W_2 = 200 \text{ rad/sec}, \ \alpha_2 = 0 \text{ rad/sec}^2$

 $W_3 = 85 \text{ rad/sec}, \ \alpha_3 = -1000 \text{ rad/sec}^2$

 $W_4 = 130 \text{ rad/sec}, \ \alpha_4 = -16,000 \text{ rad/sec}^2$

Draw the mechanism.

(16 Marks)

Module-5

The angular velocity of link-2 of the four-link RGGR mechanism is shown in Fig.Q.9. The length of crank = 100mm, connecting rod length = 375mm and the follower link = 250mm. If the angular velocity of the crank is 40k rad/sec and is constant, find the angular velocities and accelerations of link 3 and 4 respectively.

(16 Marks)

Fig.Q.9

OR

Write short notes on the following:

- a. Phase-plane representation
- b. Gyroscopic effect
- c. Eulerian angles.

(16 Marks)