2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

18SCN/SCS/SFC/LNI/SCE/SSE/SIT11

First Semester M.Tech. Degree Examination, June/July 2019

Mathematical Foundation of Computer Science

Time: 3 hrs.

BANGALOR

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain in brief: i) Significant figures ii) Truncation error iii) Inherent error iv) Accuracy and Precision v) Round off error. (10 Marks
 - b. Perform two iterations of the Bairstow method to extract a quadratic factor $x^2 + Px + q$ from the polynomial $x^3 + x^2 x + 2 = 0$. Use the initial approximations as -0.9 and 0.9. (10 Marks)

OR

- 2 a. Find all the roots of the polynomial $x^3 6x^2 + 11x 6 = 0$ using the Graeffe's root squaring method. Carry out 3 iterations. (10 Marks)
 - b. Using the Jacobi method find all the Eigen values and the corresponding Eigen vectors of the matrix.

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

(10 Marks)

Module-2

a. Ten students got the following percentage of marks in Economics and Statistics.

Roll No	1	2	3	4	5	6	7	8	9	10
Marks in Economics	78	36	98	25	75	82	90	62	65	39
Marks in Statistics	84	51	91	60	68	62	86	58	53	47

Calculate the coefficient of correlation.

(10 Marks)

b. Fit a Parabola $y = a + bx + cx^2$ by the method of least squares to the following data.

(10 Marks)

X	1	2	3	44	5	6	7
У	2.3	5.2	9.7	16.5	29.4	35.5	54.4

OR

4 a. Find the coefficient of correlation and obtain the lines of regression for the following data:

X	1	2	3	4	5	6	7	8	9
V	9	8	10	12	11	13	14	16	15

Determine Y which corresponds to x = 6.2.

(10 Marks)

b. Determine the best fitting straight line for the following data of the form y = a + bx.

(10 Marks)

X	1	3	4	6	8	9	11	14
V	1	2	4	4	5	7	8	9

18SCN/SCS/SFC/LNI/SCE/SSE/SIT11

Module-3

5 a. The probability distribution of a finite random variable X is given by the following table:

Xi	-2	-1	0	1	2	3
P(X _i)	0.1	K	0.2	2K	0.3	K

- i) Determine the value of K and find the mean variance and standard deviation.
- ii) Find: P(X < 1), $P(-1 < X \le 2)$, $P(X \ge -1)$.

(10 Marks)

b. A certain stimulus administered to each of 12 Patients resulted in the following change in blood pressure: 5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 04 (in appropriate units). Can it be concluded that on the whole, the stimulus will change the blood pressure. Use $t_{0.05}(11) = 2.201$.

10 Marks)

OR

6 a. A random variable x has the density function

$$P(x) = \begin{cases} Kx^2, & 0 \le x \le 3 \\ 0, & \text{elsewhere} \end{cases}$$
 Evaluate K and find

- i) $P(x \le 1)$ ii) $P(1 \le x \le 2)$ iii) $P(x \le 2)$ iv) P(x > 1) v) P(x > 2). Also determine the mean, variance and the standard deviation of the distribution. (10 Mark
- b. A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table.

X	1	2	3	4	5	6
Frequency	15	6	4	7	11	17

Test the hypothesis that the die is unbiased. Use $\chi^2_{0.01}(5) = 15.09$, $\chi^2_{0.05}(5) = 11.07.(10 \text{ Marks})$

Module-4

7 a. Define Isomorphism of graphs. Show that the following two graphs are isomorphic.

(10 Marks)

b. Define i) Euler circuit and ii) Hamilton cycle in graph G iii) Hamilton path. (10 Marks)

OR

8 a. Show that the complete graphs K_2 , K_3 and K_4 are planar graphs.

(10 Marks)

b. Find the number of integer solution of the equation $x_1 + x_2 + x_3 + x_4 + x_5 = 30$. Under the constraints $x_i \ge 0$ for i = 1, 2, 3, 4, 5 and further x_2 is even and x_3 is odd. (10 Marks

Module-5

9 a. Define vector space and subspace. Give example.

(10 Marks)

b. Determine whether the vectors $f(x) = 2x^3 + x^2 + x + 1$, $g(x) = x^3 + 3x^2 + x - 2$ and $h(x) = x^3 + 2x^2 - x + 3$ in the vector space R[x] of all polynomials over the real number field are linearly independent or not. (10 Marks)

OR

- 10 a. Define Basis and Dimensions of a vector space. Determine whether or not each of the following sets form a basis of $R^3(R)$: i) $B_1 = \{(1, 1, 1), (1, 0, 1)\}$
 - ii) $B_4 = \{(1, 1, 2), (1, 2, 5), (5, 3, 4)\}.$

(10 Marks)

b. Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular. Write down the inverse transformation. (10 Marks)

* * * * *