

16/17EPS151

First Semester M.Tech. Degree Examination, June/July 2019 **EHV AC Transmission**

Time: 3 hrs.

BANGALORE

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain (i) Aeolian vibrations (ii) Galloping (iii) Wake induced oscillations. Describe the measures taken to minimize the damage due to them (12 Marks)
 - b. A power of 12,000 MW is required to be transmitted over a distance of 1000 km. At voltage levels of 400 kV, 750 kV, 1000 kV, 1200 kV determine :
 - (i) Possible number of circuits required with equal magnitudes for sending and receiving end voltages with 30° phase difference.
 - (ii) The currents transmitted.
 - (iii) Total line loss.

Unit capacitor compensation x and r values given:

System voltage (kV)	400 kV	750 kV	1000 kV	1200 kV
R, Ω/km	0.031	0.0136	0.0036	0.0027
$X, \Omega/km (50 Hz)$	0.327	0.272	0.231	0.231

(04 Marks)

OR

- 2 a. With usual notations, obtain an expression for the Geometric Mean Radius (GMR) of a bundled conductor. (08 Marks)
 - b. The diameter of a 3-phase 400 kV, transmission (horizontal) line are H = 15 m; s = 11m phase separation; conductor 2×3.18 cm diameter and B = 45.72 cm. Calculate
 - (i) The matrix of inductances/km, for untransposed configuration.
 - (ii) The matrix inductances/km, when there is complete transposition.

(08 Marks)

Module-2

- 3 a. Given a positive charge Q_1 and a sphere of radius R with Q_1 located external to the sphere, whose centre is at a distance S_1 from Q_1 , show that the sphere can be made to have zero potential on its surface if a charge of opposite polarity and magnitude $Q_2 = (Q_1 R / S_1)$ is placed at a distance, $S_2 = R^2/S_1$ from the center of given sphere towards Q_1 . (12 Marks)
 - b. Calculate the voltage gradient at X = 0.25m for the sphere gap with distance between the centre of the spheres as 1 mtr of the gap between their surfaces is 0.5 mtr. Radius of spheres

being 0.25 mtr each.
$$Q_1 = \pi e_0$$
: $e_0 = \frac{1}{36\lambda} \times 10^{-9} \text{ F/m}$.

(04 Marks)

OR

- 4 a. The dimensions of a ±400 kV dc line are shown in Fig.Q4(a) below. Calculate
 - (i) The charge coefficient $Q/2\pi e_0$ for each bundle.
 - (ii) The maximum and minimum surface gradient on the conductors by
 - (a) Omitting the charges of the seconds pole & image conductors.
 - (b) Considering the charge of the second pole but omitting the charge of the image conductors
 - (iii) The average maximum surface voltage gradient of the bundle under case (ii)(b).

(08 Marks)

b. Derive Mangoldt (Markt - Mengele) formula.

(08 Marks)

Module-3

- 5 a. What are corona-loss formulae? Write expression for corona loss relations based on voltages and voltage gradients. (10 Marks)
 - b. For conductor of radius 1 cm, at a height of 5 m above ground with frequency of 50 Hz, calculate corona loss P_c , according to Peek's formula, when $E = 1.1E_0$ and $\sigma = 1$. (06 Marks)

OR

- 6 a. Explain transient response of systems with series and shunt lumped parameters and distributed line. (10 Marks)
 - b. An overhead line with $Z_0 = 400~\Omega$. Continues into a cable with $Z_c = 100~\Omega$. A surge with a crest value of 1000 kV is coming towards the junction from the overhead line. Calculate the voltage in the cable. If the end of the cable is connected to a transformer whose impedance is practically infinite to a surge, when the bushing capacitance is omitted. Calculate the transformer voltage.

Module-4

- 7 a. Explain general principles of the lighting protection problem. (08 Marks)
 - b. A 400 kV horizontal line has 22 discs in the insulator and two ground wires spaced 15 mtrs apart at 20m height at mid-span and 26m at the tower. The tower footing resistance is 40 Ω . The surge impedances are: Ground wire = 500 Ω , Stroke = 400 Ω . Assume 60% of strokes to contact within ½ span of line from the tower and at the top of tower. The coupling factor between ground and phase conductor is 0.2 and the factor is N_s is 0.2. The isokeraunik level is 60 thunderstorm days per year. Calculate the number of tripouts per year per 100 km of line.

OR

- 8 a. Discus the types and origin of overvoltages in EHV systems. (08 Marks)
 - b. Explain different measures adopted in EHV system to reduce over voltage magnitudes.

 (08 Marks)

Module-5

9 a. Explain various static VAR compensators for reactive power control in EHVAC system.

(10 Marks)

b. Elaborate on power circle diagram and its use.

(06 Marks)

OR

- 10 a. Discuss in detail, different design factors of EHVAC lines under steady state condition.
 (08 Marks)
 - b. Explain line insulation design based upon transient overvoltages in EHVAC system.
 (08 Marks)

* * * * *