

CBCS SCHEME

Fourth Semester M.Tech. Degree Examination, June/July 2019 **Machine Learning Techniques**

Time: 3 hrs.

Max. Marks: 80

16/17SCS41

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain the steps in designing a learning system.

(06 Marks)

b. Explain Find-S algorithm using enjoyspent concept and training instances given below.

Example	Sky	Air temp	Humidity	Wind	Water	Forecast	Enjoyspent
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4.	Sunny	Warm	High	Strong	Warm	Change	Yes

Explain ID3 algorithm for decision tree learning.

(08 Marks)

Give the decision tree to represent the following Boolean function:

i) $A \wedge \neg B$

ii) A XOR B

iii) $A \vee [B \wedge C]$ iv) $[A \wedge B] \vee [C \wedge D]$.

(08 Marks)

Module-2

- What is artificial neural network? Explain the derivation of gradient descent rule
 - Explain the schochastic gradient descent back propagation algorithm for feed forward (08 Marks) networks.

OR

What is genetic algorithm [GA]? Explain the prototypical genetic algorithm.

(08 Marks)

Use crossover and mutation operators on the following strings:

S1 = 11101001000

S2 = 00001010101

(08 Marks)

Module-3

Explain Brute force's Baye's concept learning.

(10 Marks)

Explain Naïve Baye's classifier.

(06 Marks)

OR

Explain probably approximately correct [PAC] learning model.

(10 Marks)

b. Prove that, if the hypothesis space H is finite, D is a sequence of $m \ge 1$. Independent randomly drawn examples of some target concept C for $0 \le \epsilon \le 1$. The probability that version space $VS_{H,D}$ is not \in exhausted is less than or equal to $|H|e^{-tm}$. (06 Marks)

Module-4

Explain K-nearest neighbor algorithm for a discrete valued function.

(08 Marks)

Explain locally weighted linear regression.

(08 Marks)

OR

8 a. Explain learn one rule algorithm.

b. Explain basic FOIL algorithm.

(10 Marks)

(06 Marks)

Module-5

9 a. What is analytical learning? Explain the analytical learning problem for safe to stack (x, y).

(08 Marks)

b. Explain regression using a single Horn's clause.

(08 Marks)

OR

10 a. Explain Q function and Q learning algorithm.
b. Explain temporal difference learning.
(10 Marks)
(06 Marks)