CBCS SCHEME

15MAT31

Third Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics – III

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Obtain the Fourier series for the function: 1

$$f(x) = \begin{cases} -\pi & \text{in } -\pi < x < 0 \\ x & \text{in } 0 < x < \pi \end{cases}$$

Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$

(08 Marks)

Express y as a Fourier series up to the second harmonics, given:

X	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
у	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

(08 Marks)

OR

Obtain the Fourier series for the function $f(x) = 2x - x^2$ in $0 \le x \le 2$.

(08 Marks)

Obtain the constant term and the first two coefficients in the only Fourier cosine series for given data:

(08 Marks)

Module-2

Find the Fourier transform of $xe^{-|x|}$

(06 Marks)

Find the Fourier sine transform of $\frac{e^{-ax}}{x}$, a > 0.

(05 Marks)

Obtain the z – transform of $\sin n\theta$ and $\cos n\theta$.

(05 Marks)

Find the inverse cosine transform of $F(\alpha) = \begin{cases} 1 - \alpha, & 0 \le \alpha \le 1 \\ 0, & \alpha > 1 \end{cases}$

Hence evaluate $\int_{0}^{\infty} \frac{\sin^{2t}}{t^{2}} dt$.

(06 Marks)

Find inverse Z – transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$

(05 Marks)

Solve the difference equation $y_{n+2} + 6y_{n+1} + 9yl = 2^n$ with $y_0 = 0, y_1 = 0$, using (05 Marks) z - transforms.

1 of 3

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

5 a. Find the lines of regression and the coefficient of correlation for the data:

X	1	2	3	4	5	6	7
У	9	8	10	12	11	13	14

(06 Marks)

b. Fit a second degree polynomial to the data:

X	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

(05 Marks)

c. Find the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$, by using Newton – Raphson method upto four decimal places. (05 Marks)

OR

- a. In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x 5y + 33 = 0 and 20x 9y = 107 respectively. Calculate \overline{x} , \overline{y} and the coefficient of correlation between x and y. (06 Marks)
 - b. Fit a curve of the type $y = ae^{bx}$ to the data :

X	5	15	20	30	35	40
У	10	14	25	40	50	62

(05 Marks)

c. Solve $\cos x = 3x - 1$ by using Regula – Falsi method correct upto three decimal places, (Carryout two approximations). (05 Marks)

Module-4

- 7 a. Give f(40) = 184, f(50) = 204, f(60) = 226, f(70) = 250, f(80) = 276, f(90) = 304. Find f(38) using Newton's forward interpolation formula. (06 Marks)
 - b. Find the interpolating polynomial for the data:

X	0	64	2	5
У	2	3	12	147

By using Lagrange's interpolating formula.

(05 Marks)

c. Use Simpson's $\frac{3}{8}$ th rule to evaluate $\int_{0}^{0.3} (1-8x^3)^{\frac{1}{2}} dx$ considering 3 equal intervals.

(05 Marks)

OR

8 a. The area of a circle (A) corresponding to diameter (D) is given below:

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105, using an appropriate interpolation formula.

(06 Marks)

b. Given the values:

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9) using Newton's divided difference formula.

(05 Marks)

(05 Marks)

c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by Weddle's rule taking seven ordinates.

Module-5

- 9 a. Using Green's theorem, evaluate $\int_{C} (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the triangle formed by the lines x = 0, y = 0 and x + y = 1. (06 Marks)
 - b. Verify Stoke's theorem for $\overrightarrow{f} = (2x y)i yz^2j y^2zk$ for the upper half of the sphere $x^2 + y^2 + z^2 = 1$. (05 Marks)
 - c. Find the external of the functional $\int_{x_1}^{x_2} \left\{ y^2 + (y^1)^2 + 2ye^x \right\} dx$. (05 Marks)

OR

- 10 a. Using Gauss divergence theorem, evaluate $\int_{S} \overrightarrow{f} \cdot \hat{n} ds$, where $\overrightarrow{f} = 4xzi y^2j + yzk$ and s is
 - the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (05 Marks)
 - b. A heavy cable hangs freely under the gravity between two fixed points. Show that the shape of the cable is a Catenary. (06 Marks)
 - c. Find the external of the functional $\int_{0}^{\pi/2} \{ (y^1)^2 y^2 + 4y \cos x \} dx$, give that $y = 0 = y(\pi/2)$. (05 Marks)

* * * * *