Fhird Semester B.E. De

Enird Semester B.E. Degree Examination, June/July 2019 Analog and Digital Electronics

Time: 3 hrs.

BANGALO

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Analyze the working of first order high pass filter and also evaluate the expression for gain.

 Design first order high pass filter at a cut off frequency of 1KHz with pass band gain of 2.

 And using frequency scaling technique convert 1KHz to 1.6 KHz. (12 Marks)
 - b. With the neat sketch explain the working principle of narrow band reject filter with necessary waveforms. (08 Marks)

OR

- a. Analyze the working of ALL PASS filter with neat circuit and necessary waveform and also drive the expression for gain. Also find the phase angle if F = 1KHz, R = 1.59kΩ and C = 0.01μF.
 - b. List the design steps for second order low pass filter. Also design a second order low pass filter at a high cut off frequency of 1KHz. (08 Marks)

Module-2

- 3 a. With a neat block diagram analyze the oscillator circuit and also derive the condition for oscillations. (06 Marks)
 - b. Analyze the working of a inverting comparator as a Schmitt trigger Also design a Schmitt triggers circuit with UTP = +3V and LTP = -3V. Draw its input output and hysteresis curve.

 (14 Marks)

OR

- 4 a. With a neat circuit explain working principle of RC phase shift oscillator with necessary equations. Also design a RC phase shift oscillator to have $F_0 = 200$ Hz. (12 Marks)
 - b. Analyze the working of Non inverting comparator circuit with necessary waveforms.

(08 Marks)

Module-3

- 5 a. Analyze the working of a 555 timer as monostable multivibrator with neat block diagram as well as circuit diagram. (14 Marks)
 - b. The monostable multivibrator is to be used as divide by 2 networks. The frequency of the input trigger signal is 2KHz. If the value of $c = 0.01\mu F$, what should be the value of resistance R. (06 Marks)

OR

- 6 a. Explain the operation of 555 timer as Astable multivibrator. (12 Marks)
 - b. Analyze the operation of Astable multivibrator as free running ramp generator. (08 Marks)

Module-4

7 a. Simplify the boolean function $F(W, X, Y, Z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ using i) SOP ii) POS form and also write the circuit. (10 Marks)

(06 Marks) Design a full adder from two half adder. (04 Marks)

Design a 4*16 decoder circuit using 3*8 decoder.

10

OR

Define MUX. Design 4 × 1 MUX using logic gates Also implement the function 8 (10 Marks) $F(a, b, c) = \Sigma(1, 3, 5, 6)$ using MUX. (10 Marks) b. Design BCD to Decimal decoder circuit.

With neat circuit analyze the operation of clocked JK Flip Flop. Also derive the 9 characteristic equation from truth table. (10 Marks) Design a synchronous 3 bit binary upcounter using the excitation table. (10 Marks)

OR

Design BCD Ripple counter. (10 Marks) With a neat circuit analyze the operation of clocked SR flip flop using NOR latch. Also derive the characteristic equation from truth table. (10 Marks)

2 of 2