## Sixth Semester B.E. Degree Examination, June/July 2019 Finite Element Analysis

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

### Module-1

1 a. Explain the steps involved in FEM.

(08 Marks)

b. Discuss the convergence and competability requirements of elements.

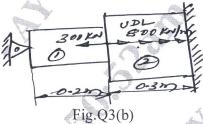
(08 Marks)

#### OR

2 a. Explain the importance of Node numbering scheme

(06 Marks)

b. What are simple, complex and multiplex elements?


(10 Marks)

#### Module-2

a. Derive the shape function for quadratic 1D bar element.

(06 Marks)

b. Find the nodal displacement stress and reaction for the bar subjected to load as shown in Fig.Q3(b). Take  $E_1 = 70$  GPa and  $E_2 = 200$  GPa. (10 Marks)



#### OR

4 a. Explain isoparametric, sub-parametric and superparametric elements.

(06 Marks)

b. For the two-bar truss shown in Fig.Q4(b), determine the displacements, stress in each elements and reactions at the support. (10 Marks)

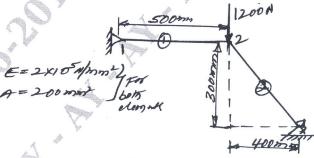
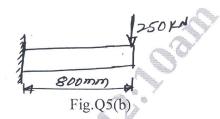



Fig.Q4(b)

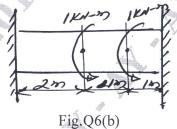

### Module-3

5 a. Derive the Hermite function for beam element.

(08 Marks)

b. A cantilever beam subjected to a point load of 250 kN as shown in Fig.Q5(b). Determine the deflection at the free end and the support reactions. Take E = 200 GPa,  $I = 4 \times 10^6 \text{ mm}^4$ .

(08 Marks)

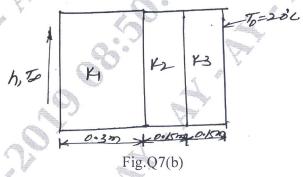



OR

Explain the finite element formation of shaft. 6

(06 Marks)

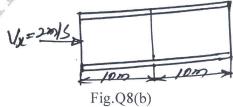
A bar of circular cross section having a diameter of 50 mm is firmly fixed at its ends and subjected to a torque as shown in Fig.Q6(b). Determine maximum angle of twist and shear stress. Take  $G = 7 \times 10^4 \text{ N/mm}^2$  and  $E = 2 \times 10^5 \text{ N/mm}^2$ . (10 Marks)




# Module-4

Explain the differential equation for an 1D-heat conduction.

(04 Marks)


A composite slab consists of three materials with thermal conductivities of 20 W/m °C, 30 W/m °C, 50 W/m °C and thickness 0.3m, 0.15m and 0.15m respectively as shown in Fig.Q7(b). The outer surface is at 20°C and the inner surface is exposed to the convective heat transfer coefficient of 25 W/m<sup>2</sup> °C and a medium at 800°C. Determine the temperature distribution within the wall. (12 Marks)



OR

Derive the stiffness matrix for 1-D element with two-nodes having nodal fluid heads. 8

For the smooth pipe with uniform cross-section of 1m<sup>2</sup> as shown in Fig.Q8(b). Determine the flow velocities at the center and right end, by knowing the velocity at the left is  $V_x = 2m/sec.$ (10 Marks)



2 of 3

Module-5

Derive the stiffness matrix of axisymmetric bodies with triangular element. (12 Marks) For the element of an axisymmetric body rotating with a constant angular velocity w = 1000 rev/min as shown in Fig.Q9(b). Determine the body force vector. Include the weight of the material,  $\rho = 7850 \text{ kg/m}^3$ . (04 Marks)

13ω (50,75) 7-60 (C (50,50) (75,50) Fig.Q9(b)

OR

10 a. Differentiate between lumped mass matrix and consistent mass matrix. (06 Marks)

b. Device consistent mass matrix for truss element. (10 Marks)